## Team for Advanced Flow Simulation and Modeling |

For more information: |
## Flow Past a Circular CylinderThe wake behind a cylinder is a fundamental problem involving smooth bodies of finite thickness and has been the focus of extensive studies, both experimentally and numerically. Until recently most numerical simulations have been restricted to 2D due to lack of computational power, whereas experiments indicate the presence of strong three dimensionality above Re=200. In this simulation at Re=300, a Karman vortex street is observed in this periodic state, and the corresponding Strouhal number is about 0.205. Visualization of the vorticity magnitude reveals the presence of columnar vortices with their axis aligned with that of the cylinder (See the figure below). In the near-wake these exhibit sinusoidal variations in the axial direction which appear to be fairly regular. With the present mesh we capture 4-5 wavelengths. Further downstream, diffusion cause the vortices to mingle and lose their individual nature. The mesh used to solve this problem consists of 197,948 nodes and 186,240 hexahedral elements. An implicit time integration method is used to obtain the solution of the coupled nonlinear system with 760,107 unknowns at every time step. This problem is solved on a CM-5. The mesh generator, flow solver, and flow visualization software (based on BoB and Ensight) were developed by the T*AFSM.
## References: 1. T.J.R. Hughes, T.E. Tezduyar and A.N. Brooks, "Streamline Upwind
Formulations for Advection-Diffusion, Navier-Stokes, and First-order
Hyperbolic Equations", 2. T.E. Tezduyar, "Stabilized Finite Element Formulations for
Incompressible Flow Computations", 3. T.E. Tezduyar, S. Mittal and R. Shih, "Time-accurate
Incompressible Flow Computations with Quadrilateral Velocity-Pressure
Elements", 4. V. Kalro and T. Tezduyar, "Parallel 3D Computation of Unsteady
Flows around Circular Cylinders", 5. T. Tezduyar and Y. Osawa, "Methods for Parallel Computation of
Complex Flow Problems", |