## Team for Advanced Flow Simulation and Modeling |

For more information: |
## Airflow Past an AutomobileAirflow past an automobile (modeled after a Saturn SL2) at 55 miles per hour is simulated. The model is quite detailed and includes the wheels, recessed headlights, and a spoiler. This tetrahedral mesh contains 447,180 nodes and 2,801,488 elements. At each time step, a system of equations with 1,638,389 unknowns is solved using matrix-free iterations.The incompressible flow, with a modified Smagorinsky turbulence model, was computed under two flow conditions. The first simulation modeled road conditions. Here, we applied the free stream velocity to both the inflow boundary and the road, and we forced the wheels to spin (a rotational flow field was imposed on the tires). Zero velocity was imposed on the rest of the automobile. This flow condition yielded a drag coefficient of 0.433. The second simulation modeled wind tunnel conditions. Here, we applied the free stream velocity just at the inflow boundary, and applied slip conditions on the road. Zero velocity was imposed on both the tires and the automobile. This flow condition yielded a drag coefficient of 0.335. The actual drag coefficient of a Saturn SL2 automobile under wind tunnel conditions is 0.343. Shown in the figures are the pressure distribution on the automobile and the road (red being high pressure and blue being low pressure), and the streamlines around the automobile (the streamline colors represent the magnitude of the velocity). The simulations of flow past the automobile was also partially carried out on the Cray T3D. The unstructured mesh generator, flow solver, and flow visualization software (based on Visual3 library and Wavefront) were developed by the T*AFSM. The flow simulations for the automobile were part of an effort by the T*AFSM researchers, partially funded by the Advanced Research Projects Agency, for the development of scalable libraries for fluid mechanics applications.
## References: 1. T.J.R. Hughes, T.E. Tezduyar and A.N. Brooks, "Streamline Upwind
Formulations for Advection-Diffusion, Navier-Stokes, and First-order
Hyperbolic Equations", 2. T.E. Tezduyar, "Stabilized Finite Element Formulations for
Incompressible Flow Computations", 3. T.E. Tezduyar, S. Mittal, S.E. Ray and R. Shih, "Incompressible
Flow Computations with Stabilized Bilinear and Linear
Equal-order-interpolation Velocity-Pressure Elements", 4. T.E. Tezduyar, M. Behr and T.J.R. Hughes, "High Performance Finite
Element Computation of Fluid Dynamics Problems", 5. A.A. Johnson and T.E. Tezduyar, "Parallel Computation of
Incompressible Flows with Complex Geometries", 6. T. Tezduyar, "Advanced Flow Simulation and Modeling", 7. T. Tezduyar, "CFD Methods for Three-Dimensional Computation of
Complex Flow Problems", 8. T. Tezduyar and Y. Osawa, "Methods for Parallel Computation of
Complex Flow Problems", |