TAFSM

Team for Advanced Flow Simulation and Modeling



Home

Research Overview

Research Highlights

Projects

Takizawa Lab

Undergraduate Research

TAFSM Featured

TAFSM Recognized

Publication, Preprints

Currrent Team Members

Collaborators, Ex-Members

AHPCRC, History

Links

For more information:
  tezduyar@gmail.com

Journal Publications

(Last update: Jul 08, 2014)


ISI-Indexed Journal Articles (Researcher ID: F-6134-2012)

[1]   T.J.R. Hughes and T.E. Tezduyar, “Finite Elements Based Upon Mindlin Plate Theory with Particular Reference to the Four-node Bilinear Isoparametric Element”, Journal of Applied Mechanics, 48 (1981) 587–596, also in New Concepts in Finite Element Analysis, AMD-Vol. 44, ASME, New York (1981) 81-106, doi: 10.1115/1.3157679.

[2]   T.J.R. Hughes and T.E. Tezduyar, “Stability and Accuracy Analysis of Some Fully-discrete Algorithms for the One-dimensional Second-order Wave Equation”, Computers & Fluids, 19 (1984) 665–668, doi: 10.1016/0045-7949(84)90113-5.

[3]   T.J.R. Hughes and T.E. Tezduyar, “Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations”, Computer Methods in Applied Mechanics and Engineering, 45 (1984) 217–284, doi: 10.1016/0045-7825(84) 90157-9.

[4]   T.J.R. Hughes and T.E. Tezduyar, “Analysis of Some Fully-discrete Algorithms for the One-dimensional Heat Equation”, International Journal of Numerical Methods in Engineering, 21 (1985) 163–168, doi: 10.1002/nme.1620210113.

[5]   L.T. Wheeler, T.E. Tezduyar, and B.H. Eldiwany, “Profiles of minimum stress concentration for antiplane deformation of an elastic solid”, Journal of Elasticity, 15 (1985) 271–282, doi: 10.1007/BF00041425.

[6]   T.E. Tezduyar and D.K. Ganjoo, “Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems”, Computer Methods in Applied Mechanics and Engineering, 59 (1986) 49–71, doi: 10.1016/0045-7825(86)90023-X.

[7]   T.E. Tezduyar, L.T. Wheeler, and L. Graux, “Finite deformation of a circular elastic membrane containing a concentric rigid inclusion”, International Journal of Nonlinear Mechanics, 22 (1987) 61–72, doi: 10.1016/0020-7462(87)90049-7.

[8]   T.E. Tezduyar and Y.J. Park, “Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations”, Computer Methods in Applied Mechanics and Engineering, 59 (1986) 307–325, doi: 10.1016/0045-7825(86)90003-4.

[9]   T.E. Tezduyar, Y.J. Park, and H.A. Deans, “Finite element procedures for time-dependent convection-diffusion-reaction systems”, International Journal for Numerical Methods in Fluids, 7 (1987) 1013–1033, doi: 10.1002/fld.1650071003.

[10]   D.K. Ganjoo and T.E. Tezduyar, “Petrov-Galerkin formulations for electrochemical processes”, Computer Methods in Applied Mechanics and Engineering, 65 (1987) 61–83, doi: 10.1016/0045-7825(87)90183-6.

[11]   T.E. Tezduyar, R. Glowinski, and J. Liou, “Petrov-Galerkin methods on multiply-connected domains for the vorticity-stream function formulation of the incompressible Navier-Stokes equations”, International Journal for Numerical Methods in Fluids, 8 (1988) 1269–1290, doi: 10.1002/fld.1650081012.

[12]   D.K. Ganjoo, T.E. Tezduyar, and W.D. Goodrich, “A new formulation for numerical solution of electrophoresis separation processes”, Computer Methods in Applied Mechanics and Engineering, 75 (1989) 515–530, doi: 10.1016/0045-7825(89)90045-5.

[13]   T.E. Tezduyar and J. Liou, “Grouped element-by-element iteration schemes for incompressible flow computations”, Computer Physcis Communications, 53 (1989) 441–453, doi: 10.1016/0010-4655(89)90177-X.

[14]   T.E. Tezduyar, “Finite element formulation for the vorticity-stream function form of the incompressible Euler equations on multiply-connected domains”, Computer Methods in Applied Mechanics and Engineering, 73 (1989) 331–339, doi: 10.1016/0045-7825(89)90072-8.

[15]   T.E. Tezduyar, J. Liou, D.K. Ganjoo, and M. Behr, “Solution techniques for the vorticity-stream function formulation of two-dimensional incompressible flows”, International Journal for Numerical Methods in Fluids, 11 (1990) 515–539, doi: 10.1002/fld.1650110505.

[16]   T.E. Tezduyar and J. Liou, “Adaptive implicit-explicit finite element algorithms for fluid mechanics problems”, Computer Methods in Applied Mechanics and Engineering, 78 (1990) 165–179, doi: 10.1016/0045-7825(90)90099-8.

[17]   T.E. Tezduyar, J. Liou, and D.K. Ganjoo, “Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations”, Computers & Structures, 35 (4) (1990) 445–472, doi: 10.1016/0045-7949(90)90069-E.

[18]   T.E. Tezduyar and J. Liou, “Computation of spatially periodic flows based on the vorticity-stream function formulation”, Computer Methods in Applied Mechanics and Engineering, 83 (1990) 121–142, doi: 10.1016/0045-7825(90)90147-E.

[19]   Y.J. Park, H.A. Deans, and T.E. Tezduyar, “Finite element formulation for transport equations in a mixed coordinate system: an application to determine temperature effects on the single-well chemical tracer test”, International Journal for Numerical Methods in Fluids, 11 (1990) 769–790, doi: 10.1002/fld.1650110605.

[20]   J. Liou and T.E. Tezduyar, “Iterative adaptive implicit-explicit methods for flow problems”, International Journal for Numerical Methods in Fluids, 11 (1990) 867–880, doi: 10.1002/fld.1650110611.

[21]   T.E. Tezduyar and J. Liou, “On the downstream boundary condition for the vorticity-stream function formulation of two-dimensional incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 85 (1991) 207–217, doi: 10.1016/ 0045-7825(91)90133-Q.

[22]   J. Liou, H.A. Deans, and T.E. Tezduyar, “Finite element simulation of deep-well wet oxidation reactor”, Journal of Engineering Mechanics, 116 (1990) 1780–1797, doi: 10.1061/ (ASCE)0733-9399(1990)116:8(1780).

[23]   T.E. Tezduyar and R. Shih, “Numerical experiments on downstream boundary of flow past cylinder”, Journal of Engineering Mechanics, 117 (4) (1991) 854–871, doi: 10.1061/ (ASCE)0733-9399(1991)117:4(854).

[24]   T.E. Tezduyar, S. Mittal, and R. Shih, “Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements”, Computer Methods in Applied Mechanics and Engineering, 87 (1991) 363–384, doi: 10.1016/0045-7825(91)90014-W.

[25]   M. Behr, J. Liou, R. Shih, and T.E. Tezduyar, “Vorticity-stream function formulation of unsteady incompressible flow past a cylinder: Sensitivity of the computed flow field to the location of the outflow boundary”, International Journal for Numerical Methods in Fluids, 12 (1991) 323–342, doi: 10.1002/fld.1650120403.

[26]   S. Mittal, H.A. Deans, and T.E. Tezduyar, “Numerical simulation of deep-well wet oxidation reactor using steam”, Journal of Engineering Mechanics, 117 (1991) 798–819, doi: 10.1061/(ASCE)0733-9399(1991)117:4(798).

[27]   G.J. Le Beau and T.E. Tezduyar, “Finite element solution of flow problems with mixed-time integration”, Journal of Engineering Mechanics, 117 (1991) 1311–1330, doi: 10.1061/(ASCE)0733-9399(1991)117:6(1311).

[28]   T.E. Tezduyar, S. Mittal, S.E. Ray, and R. Shih, “Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements”, Computer Methods in Applied Mechanics and Engineering, 95 (1992) 221–242, doi: 10.1016/ 0045-7825(92)90141-6.

[29]   T.E. Tezduyar, M. Behr, and J. Liou, “A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests”, Computer Methods in Applied Mechanics and Engineering, 94 (3) (1992) 339–351, doi: 10.1016/0045-7825(92)90059-S.

[30]   T.E. Tezduyar, M. Behr, S. Mittal, and J. Liou, “A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders”, Computer Methods in Applied Mechanics and Engineering, 94 (3) (1992) 353–371, doi: 10.1016/0045-7825(92)90060-W.

[31]    T.E. Tezduyar, “Stabilized finite element formulations for incompressible flow computations”, Advances in Applied Mechanics, 28 (1992) 1–44, doi: 10.1016/S0065-2156(08)70153-4.

[32]   T.E. Tezduyar, M. Behr, S.K. Aliabadi, S. Mittal, and S.E. Ray, “A new mixed preconditioning method for finite element computations”, Computer Methods in Applied Mechanics and Engineering, 99 (1992) 27–42, doi: 10.1016/0045-7825(92)90121-Y.

[33]   O. Pironneau, J. Liou, and T. Tezduyar, “Characteristic-Galerkin and Galerkin/Least-squares Space–Time Formulations for the Advection–Diffusion Equation with Time-dependent Domains”, Computer Methods in Applied Mechanics and Engineering, 100 (1992) 117–141, doi: 10.1016/0045-7825(92)90116-2.

[34]   S. Mittal and T.E. Tezduyar, “A finite element study of incompressible flows past oscillating cylinders and aerofoils”, International Journal for Numerical Methods in Fluids, 15 (1992) 1073–1118, doi: 10.1002/fld.1650150911.

[35]   S. Mittal and T.E. Tezduyar, “Notes on the stabilized space–time finite element formulation of unsteady incompressible flows”, Computer Physics Communications, 73 (1992) 93–112, doi: 10.1016/0010-4655(92)90031-S.

[36]   M.A. Behr, L.P. Franca, and T.E. Tezduyar, “Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 104 (1) (1993) 31–48, doi: 10.1016/0045-7825(93)90205-C.

[37]   G.J. Le Beau, S.E. Ray, S.K. Aliabadi, and T.E. Tezduyar, “SUPG finite element computation of compressible flows with the entropy and conservation variables formulations”, Computer Methods in Applied Mechanics and Engineering, 104 (1993) 397–422, doi: 10.1016/ 0045-7825(93)90033-T.

[38]   S.K. Aliabadi and T.E. Tezduyar, “Space–time finite element computation of compressible flows involving moving boundaries and interfaces”, Computer Methods in Applied Mechanics and Engineering, 107 (1–2) (1993) 209–223, doi: 10.1016/0045-7825(93)90176-X.

[39]   M. Behr, A. Johnson, J. Kennedy, S. Mittal, and T. Tezduyar, “Computation of incompressible flows with implicit finite element implementations on the Connection Machine”, Computer Methods in Applied Mechanics and Engineering, 108 (1993) 99–118, doi: 10.1016/0045-7825(93)90155-Q.

[40]   M. Behr and T.E. Tezduyar, “Finite element solution strategies for large-scale flow simulations”, Computer Methods in Applied Mechanics and Engineering, 112 (1994) 3–24, doi: 10.1016/0045-7825(94)90016-7.

[41]   S. Mittal and T.E. Tezduyar, “Massively parallel finite element computation of incompressible flows involving fluid-body interactions”, Computer Methods in Applied Mechanics and Engineering, 112 (1994) 253–282, doi: 10.1016/0045-7825(94)90029-9.

[42]   T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal, “Parallel finite-element computation of 3D flows”, Computer, 26 (10) (1993) 27–36, doi: 10.1109/2.237441.

[43]   T.E. Tezduyar, S.K. Aliabadi, M. Behr, and S. Mittal, “Massively parallel finite element simulation of compressible and incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 157–177, doi: 10.1016/0045-7825(94)00082-4.

[44]   J.G. Kennedy, M. Behr, V. Kalro, and T.E. Tezduyar, “Implementation of implicit finite element methods for incompressible flows on the CM-5”, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 95–111, doi: 10.1016/0045-7825(94)00078-6.

[45]   A.A. Johnson and T.E. Tezduyar, “Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces”, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 73–94, doi: 10.1016/0045-7825(94) 00077-8.

[46]   G.P. Wren, S.E. Ray, S.K. Aliabadi, and T.E. Tezduyar, “Space–time finite element computation of compressible flows between moving components”, International Journal for Numerical Methods in Fluids, 21 (1995) 981–991, doi: 10.1002/fld.1650211015.

[47]   S. Mittal and T.E. Tezduyar, “Parallel finite element simulation of 3D incompressible flows – Fluid-structure interactions”, International Journal for Numerical Methods in Fluids, 21 (1995) 933–953, doi: 10.1002/fld.1650211011.

[48]   S.K. Aliabadi and T.E. Tezduyar, “Parallel fluid dynamics computations in aerospace applications”, International Journal for Numerical Methods in Fluids, 21 (1995) 783–805, doi: 10.1002/fld.1650211003.

[49]   K. Kashiyama, H. Ito, M. Behr, and T. Tezduyar, “Three-step explicit finite element computation of shallow water flows on a massively parallel computer”, International Journal for Numerical Methods in Fluids, 21 (1995) 885–900, doi: 10.1002/fld.1650211009.

[50]   M. Behr, D. Hastreiter, S. Mittal, and T.E. Tezduyar, “Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries”, Computer Methods in Applied Mechanics and Engineering, 123 (1995) 309–316, doi: 10.1016/ 0045-7825(94)00736-7.

[51]   A.A. Johnson and T.E. Tezduyar, “Simulation of multiple spheres falling in a liquid-filled tube”, Computer Methods in Applied Mechanics and Engineering, 134 (1996) 351–373, doi: 10.1016/0045-7825(95)00988-4.

[52]    A.A. Johnson and T.E. Tezduyar, “Parallel computation of incompressible flows with complex geometries”, International Journal for Numerical Methods in Fluids, 24 (1997) 1321–1340, doi: 10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C.

[53]   V. Kalro, S. Aliabadi, W. Garrard, T. Tezduyar, S. Mittal, and K. Stein, “Parallel finite element simulation of large ram-air parachutes”, International Journal for Numerical Methods in Fluids, 24 (1997) 1353–1369, doi: 10.1002/(SICI)1097-0363(199706)24:12<1353:: AID-FLD564>3.0.CO;2-6.

[54]   W.B. Sturek, S. Ray, S. Aliabadi, C. Waters, and T.E. Tezduyar, “Parallel finite element computation of missile aerodynamics”, International Journal for Numerical Methods in Fluids, 24 (1997) 1417–1432, doi: 10.1002/(SICI)1097-0363(199706)24:12<1417:: AID-FLD567>3.3.CO;2-E.

[55]   G.P. Wren, S.E. Ray, S.K. Aliabadi, and T.E. Tezduyar, “Simulation of flow problems with moving mechanical components, fluid–structure interactions and two-fluid interfaces”, International Journal for Numerical Methods in Fluids, 24 (1997) 1433–1448, doi: 10.1002/ (SICI)1097-0363(199706)24:12<1433::AID-FLD568>3.3.CO;2-L.

[56]   T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V. Kalro, and M. Litke, “Flow simulation and high performance computing”, Computational Mechanics, 18 (1996) 397–412, doi: 10. 1007/BF00350249.

[57]   A.A. Johnson and T.E. Tezduyar, “3D simulation of fluid-particle interactions with the number of particles reaching 100”, Computer Methods in Applied Mechanics and Engineering, 145 (1997) 301–321, doi: 10.1016/S0045-7825(96)01223-6.

[58]   K. Kashiyama, K. Saitoh, M. Behr, and T.E. Tezduyar, “Parallel finite element methods for large-scale computation of storm surges and tidal flows”, International Journal for Numerical Methods in Fluids, 24 (1997) 1371–1389, doi: 10.1002/(SICI)1097-0363(199706)24: 12<1371::AID-FLD565>3.0.CO;2-7.

[59]   V. Kalro and T. Tezduyar, “Parallel 3D computation of unsteady flows around circular cylinders”, Parallel Computing, 23 (1997) 1235–1248, doi: 10.1016/S0167-8191(97) 00050-1.

[60]   T. Tezduyar, V. Kalro, and W. Garrard, “Parallel computational methods for 3D simulation of a parafoil with prescribed shape changes”, Parallel Computing, 23 (1997) 1349–1363, doi: 10.1016/S0167-8191(97)00057-4.

[61]   S.E. Ray, G.P. Wren, and T.E. Tezduyar, “Parallel implementations of a finite element formulation for fluid–structure interactions in interior flows”, Parallel Computing, 23 (1997) 1279–1292, doi: 10.1016/S0167-8191(97)00053-7.

[62]   V. Kalro and T. Tezduyar, “3D computation of unsteady flow past a sphere with a parallel finite element method”, Computer Methods in Applied Mechanics and Engineering, 151 (1998) 267–276, doi: 10.1016/S0045-7825(97)00120-5.

[63]   N. Nigro, M. Storti, S. Idelsohn, and T. Tezduyar, “Physics based GMRES preconditioner for compressible and incompressible Navier–Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 154 (1998) 203–228, doi: 10.1016/S0045-7825(97)00129-1.

[64]   T. Tezduyar, S. Aliabadi, and M. Behr, “Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces”, Computer Methods in Applied Mechanics and Engineering, 155 (1998) 235–248, doi: 10.1016/S0045-7825(97) 00194-1.

[65]   S. Mittal and T. Tezduyar, “A unified finite element formulation for compressible and incompressible flows using augumented conservation variables.”, Computer Methods in Applied Mechanics and Engineering, 161 (1998) 229–243, doi: 10.1016/S0045-7825(97)00318-6.

[66]   I. Guler, M. Behr, and T. Tezduyar, “Parallel finite element computation of free-surface flows”, Computational Mechanics, 23 (1999) 117–123, doi: 10.1007/s004660050391.

[67]   S. Mittal, S. Aliabadi, and T. Tezduyar, “Parallel computation of unsteady compressible flows with the EDICT”, Computational Mechanics, 23 (1999) 151–157, doi: 10.1007/ s004660050395.

[68]   M. Behr and T. Tezduyar, “The Shear-Slip Mesh Update Method”, Computer Methods in Applied Mechanics and Engineering, 174 (1999) 261–274, doi: 10.1016/S0045-7825(98) 00299-0.

[69]   A.A. Johnson and T.E. Tezduyar, “Advanced mesh generation and update methods for 3D flow simulations”, Computational Mechanics, 23 (1999) 130–143, doi: 10.1007/ s004660050393.

[70]   Y. Osawa, V. Kalro, and T. Tezduyar, “Multi-domain parallel computation of wake flows”, Computer Methods in Applied Mechanics and Engineering, 174 (1999) 371–391, doi: 10.1016/ S0045-7825(98)00305-3.

[71]   K. Stein, R. Benney, V. Kalro, T.E. Tezduyar, J. Leonard, and M. Accorsi, “Parachute fluid–structure interactions: 3-D Computation”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 373–386, doi: 10.1016/S0045-7825(00)00208-5.

[72]   S. Aliabadi and T.E. Tezduyar, “Stabilized-Finite-Element/Interface-Capturing Technique for parallel computation of unsteady flows with interfaces”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 243–261, doi: 10.1016/S0045-7825(00)00200-0.

[73]   K. Kashiyama, Y. Ohba, T. Takagi, M. Behr, and T. Tezduyar, “Parallel finite element method utilizing the mode splitting and sigma coordinate for shallow water flows”, Computational Mechanics, 23 (1999) 144–150, doi: 10.1007/s004660050394.

[74]   T.E. Tezduyar and S. Aliabadi, “EDICT for 3D computation of two-fluid interfaces”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 403–410, doi: 10.1016/ S0045-7825(00)00210-3.

[75]   T.E. Tezduyar, “CFD methods for three-dimensional computation of complex flow problems”, Journal of Wind Engineering and Industrial Aerodynamics, 81 (1999) 97–116, doi: 10.1016/S0167-6105(99)00011-2.

[76]   M. Behr and T. Tezduyar, “Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components”, Computer Methods in Applied Mechanics and Engineering, 190 (2001) 3189–3200, doi: 10.1016/S0045-7825(00)00388-1.

[77]   A. Johnson and T. Tezduyar, “Methods for 3D computation of fluid-object interactions in spatially-periodic flows”, Computer Methods in Applied Mechanics and Engineering, 190 (2001) 3201–3221, doi: 10.1016/S0045-7825(00)00389-3.

[78]   T. Tezduyar and Y. Osawa, “Methods for parallel computation of complex flow problems”, Parallel Computing, 25 (1999) 2039–2066, doi: 10.1016/S0167-8191(99)00080-0.

[79]   T.E. Tezduyar and Y. Osawa, “Finite element stabilization parameters computed from element matrices and vectors”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 411–430, doi: 10.1016/S0045-7825(00)00211-5.

[80]   V. Kalro and T.E. Tezduyar, “A parallel 3D computational method for fluid–structure interactions in parachute systems”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 321–332, doi: 10.1016/S0045-7825(00)00204-8.

[81]   S.E. Ray and T.E. Tezduyar, “Fluid–object interactions in interior ballistics”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 363–372, doi: 10.1016/ S0045-7825(00)00207-3.

[82]   M. Cruchaga, D. Celentano, and T. Tezduyar, “A moving Lagrangian interface technique for flow computations over fixed meshes”, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 525–543, doi: 10.1016/S0045-7825(01)00300-0.

[83]   K. Stein, R. Benney, T. Tezduyar, and J. Potvin, “Fluid–structure interactions of a cross parachute: Numerical simulation”, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 673–687, doi: 10.1016/S0045-7825(01)00312-7.

[84]   T. Tezduyar and Y. Osawa, “The Multi-Domain Method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft”, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 705–716, doi: 10.1016/S0045-7825(01)00310-3.

[85]   T. Tezduyar and Y. Osawa, “Fluid–structure interactions of a parachute crossing the far wake of an aircraft”, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 717–726, doi: 10.1016/S0045-7825(01)00311-5.

[86]   T.E. Tezduyar, “Finite element methods for flow problems with moving boundaries and interfaces”, Archives of Computational Methods in Engineering, 8 (2001) 83–130, doi: 10.1007/BF02897870.

[87]   K.R. Stein, R.J. Benney, T.E. Tezduyar, J.W. Leonard, and M.L. Accorsi, “Fluid–structure interactions of a round parachute: Modeling and simulation techniques”, Journal of Aircraft, 38 (2001) 800–808, doi: 10.2514/2.2864.

[88]   H. Johari, K. Stein, and T. Tezduyar, “Impulsively started flow about a rigid parachute canopy”, Journal of Aircraft, 38 (2001) 1102–1109, doi: 10.2514/2.2878.

[89]   M. Cruchaga, D. Celentano, and T. Tezduyar, “Computation of mould filling processes with a moving lagrangian interface technique”, Communications in Numerical Methods in Engineering, 18 (2002) 483–493, doi: 10.1002/cnm.506.

[90]   K. Stein, T. Tezduyar, V. Kumar, S. Sathe, R. Benney, E. Thornburg, C. Kyle, and T. Nonoshita, “Aerodynamic interactions between parachute canopies”, Journal of Applied Mechanics, 70 (2003) 50–57, doi: 10.1115/1.1530634.

[91]   K. Stein, T. Tezduyar, and R. Benney, “Mesh moving techniques for fluid–structure interactions with large displacements”, Journal of Applied Mechanics, 70 (2003) 58–63, doi: 10.1115/1.1530635.

[92]   J.E. Akin, T. Tezduyar, M. Ungor, and S. Mittal, “Stabilization parameters and Smagorinsky turbulence model”, Journal of Applied Mechanics, 70 (2003) 2–9, doi: 10.1115/ 1.1526569.

[93]   T.E. Tezduyar, “Computation of moving boundaries and interfaces and stabilization parameters”, International Journal for Numerical Methods in Fluids, 43 (2003) 555–575, doi: 10.1002/fld.505.

[94]   K. Stein, T. Tezduyar, and R. Benney, “Computational methods for modeling parachute systems”, Computing in Science and Engineering, 5 (2003) 39–46, doi: 10.1109/MCISE.2003. 1166551.

[95]   T.E. Tezduyar and S. Sathe, “Enhanced-discretization space-time technique (EDSTT)”, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 1385–1401, doi: 10. 1016/j.cma.2003.12.029.

[96]   K. Stein, T.E. Tezduyar, and R. Benney, “Automatic mesh update with the solid-extension mesh moving technique”, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 2019–2032, doi: 10.1016/j.cma.2003.12.046.

[97]   T.E. Tezduyar and S. Sathe, “Enhanced-approximation linear solution technique (EALST)”, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 2033–2049, doi: 10.1016/j.cma.2003.12.045.

[98]   J.E. Akin and T.E. Tezduyar, “Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements”, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 1909–1922, doi: 10.1016/j.cma.2003.12.050.

[99]   K. Stein, T.E. Tezduyar, S. Sathe, R. Benney, and R. Charles, “Fluid-structure interaction modeling of parachute soft-landing dynamics”, International Journal for Numerical Methods in Fluids, 47 (2005) 619–631, doi: 10.1002/fld.835.

[100]   T.E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, “Space–time finite element techniques for computation of fluid–structure interactions”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 2002–2027, doi: 10.1016/j.cma.2004.09.014.

[101]   T.E. Tezduyar and S. Sathe, “Enhanced-discretization successive update method (EDSUM)”, International Journal for Numerical Methods in Fluids, 47 (2005) 633–654, doi: 10.1002/fld.836.

[102]   M.A. Cruchaga, D.J. Celentano, and T.E. Tezduyar, “Moving-interface computations with the edge-tracked interface locator technique (ETILT)”, International Journal for Numerical Methods in Fluids, 47 (2005) 451–469, doi: 10.1002/fld.825.

[103]   T.E. Tezduyar, “Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 2983–3000, doi: 10.1016/j.cma.2004.09.018.

[104]   T.E. Tezduyar and M. Senga, “Stabilization and shock-capturing parameters in SUPG formulation of compressible flows”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1621–1632, doi: 10.1016/j.cma.2005.05.032.

[105]   T.E. Tezduyar and A. Sameh, “Parallel finite element computations in fluid mechanics”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1872–1884, doi: 10. 1016/j.cma.2005.05.038.

[106]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Computer modeling of cardiovascular fluid–structure interactions with the Deforming-Spatial-Domain/Stabilized Space–Time formulation”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1885–1895, doi: 10.1016/j.cma.2005.05.050.

[107]   T.E. Tezduyar, “Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces”, Computers & Fluids, 36 (2007) 191–206, doi: 10.1016/j.compfluid.2005. 02.011.

[108]   T.E. Tezduyar, “Finite elements in fluids: Special methods and enhanced solution techniques”, Computers & Fluids, 36 (2007) 207–223, doi: 10.1016/j.compfluid.2005.02. 010.

[109]   L. Catabriga, A.L.G.A. Coutinho, and T.E. Tezduyar, “Compressible flow SUPG parameters computed from element matrices”, Communications in Numerical Methods in Engineering, 21 (2005) 465–476, doi: 10.1002/cnm.759.

[110]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Influence of wall elasticity in patient-specific hemodynamic simulations”, Computers & Fluids, 36 (2007) 160–168, doi: 10.1016/j.compfluid.2005.07.014.

[111]   S. Sathe, R. Benney, R. Charles, E. Doucette, J. Miletti, M. Senga, K. Stein, and T.E. Tezduyar, “Fluid–structure interaction modeling of complex parachute designs with the space–time finite element techniques”, Computers & Fluids, 36 (2007) 127–135, doi: 10.1016/j.compfluid.2005.07.010.

[112]   T.E. Tezduyar and M. Senga, “SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing”, Computers & Fluids, 36 (2007) 147–159, doi: 10.1016/j.compfluid. 2005.07.009.

[113]   T. Washio, T. Hisada, H. Watanabe, and T.E. Tezduyar, “A robust preconditioner for fluid–structure interaction problems”, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 4027–4047, doi: 10.1016/j.cma.2004.10.001.

[114]   F. Rispoli, A. Corsini, and T.E. Tezduyar, “Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD)”, Computers & Fluids, 36 (2007) 121–126, doi: 10.1016/j.compfluid.2005.07.004.

[115]   J.E. Akin, T.E. Tezduyar, and M. Ungor, “Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT)”, Computers & Fluids, 36 (2007) 2–11, doi: 10.1016/j.compfluid.2005.07.008.

[116]   T.E. Tezduyar, S. Sathe, and K. Stein, “Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 5743–5753, doi: 10. 1016/j.cma.2005.08.023.

[117]   L. Catabriga, A.L.G.A. Coutinho, and T.E. Tezduyar, “Compressible flow SUPG parameters computed from degree-of-freedom submatrices”, Computational Mechanics, 38 (2006) 334–343, doi: 10.1007/s00466-006-0033-1.

[118]   T.E. Tezduyar, M. Senga, and D. Vicker, “Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing”, Computational Mechanics, 38 (2006) 469–481, doi: 10.1007/ s00466-005-0025-6.

[119]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures”, Computational Mechanics, 38 (2006) 482–490, doi: 10.1007/s00466-006-0065-6.

[120]   M.A. Cruchaga, D.J. Celentano, and T.E. Tezduyar, “Collapse of a liquid column: Numerical simulation and experimental validation”, Computational Mechanics, 39 (2007) 453–476, doi: 10.1007/s00466-006-0043-z.

[121]    A. Corsini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation”, Computational Mechanics, 38 (2006) 356–364, doi: 10.1007/s00466-006-0045-x.

[122]   T.E. Tezduyar and S. Sathe, “Enhanced-discretization selective stabilization procedure (EDSSP)”, Computational Mechanics, 38 (2006) 456–468, doi: 10.1007/s00466-006-0056-7.

[123]   K. Takizawa, T. Yabe, Y. Tsugawa, T.E. Tezduyar, and H. Mizoe, “Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids”, Computational Mechanics, 40 (2007) 167–183, doi: 10.1007/ s00466-006-0093-2.

[124]   F. Rispoli, R. Saavedra, A. Corsini, and T.E. Tezduyar, “Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing”, International Journal for Numerical Methods in Fluids, 54 (2007) 695–706, doi: 10.1002/fld.1447.

[125]   T.E. Tezduyar and S. Sathe, “Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques”, International Journal for Numerical Methods in Fluids, 54 (2007) 855–900, doi: 10.1002/fld.1430.

[126]   T.E. Tezduyar, S. Sathe, T. Cragin, B. Nanna, B.S. Conklin, J. Pausewang, and M. Schwaab, “Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics”, International Journal for Numerical Methods in Fluids, 54 (2007) 901–922, doi: 10.1002/fld.1443.

[127]   T. Yabe, K. Takizawa, T.E. Tezduyar, and H.-N. Im, “Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids — An overview”, International Journal for Numerical Methods in Fluids, 54 (2007) 841–853, doi: 10.1002/fld. 1473.

[128]   K. Takizawa, K. Tanizawa, T. Yabe, and T.E. Tezduyar, “Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids”, International Journal for Numerical Methods in Fluids, 54 (2007) 1011–1019, doi: 10.1002/fld.1466.

[129]   Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery”, International Journal for Numerical Methods in Fluids, 54 (2007) 593–608, doi: 10.1002/fld.1484.

[130]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm — Dependence of the effect on the aneurysm shape”, International Journal for Numerical Methods in Fluids, 54 (2007) 995–1009, doi: 10.1002/fld.1497.

[131]   M.A. Cruchaga, D.J. Celentano, and T.E. Tezduyar, “A numerical model based on the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces”, International Journal for Numerical Methods in Fluids, 54 (2007) 1021–1030, doi: 10.1002/fld.1498.

[132]   T.E. Tezduyar, S. Sathe, M. Schwaab, and B.S. Conklin, “Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique”, International Journal for Numerical Methods in Fluids, 57 (2008) 601–629, doi: 10.1002/fld.1633.

[133]   T.E. Tezduyar, S. Ramakrishnan, and S. Sathe, “Stabilized formulations for incompressible flows with thermal coupling”, International Journal for Numerical Methods in Fluids, 57 (2008) 1189–1209, doi: 10.1002/fld.1743.

[134]   T.E. Tezduyar, S. Sathe, J. Pausewang, M. Schwaab, J. Christopher, and J. Crabtree, “Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods”, Computational Mechanics, 43 (2008) 39–49, doi: 10.1007/s00466-008-0261-7.

[135]   T.E. Tezduyar, S. Sathe, M. Schwaab, J. Pausewang, J. Christopher, and J. Crabtree, “Fluid–structure interaction modeling of ringsail parachutes”, Computational Mechanics, 43 (2008) 133–142, doi: 10.1007/s00466-008-0260-8.

[136]   S. Sathe and T.E. Tezduyar, “Modeling of fluid–structure interactions with the space–time finite elements: Contact problems”, Computational Mechanics, 43 (2008) 51–60, doi: 10.1007/s00466-008-0299-6.

[137]   T.E. Tezduyar, M. Schwaab, and S. Sathe, “Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3524–3533, doi: 10.1016/j.cma.2008.05.024.

[138]   M. Manguoglu, A.H. Sameh, T.E. Tezduyar, and S. Sathe, “A nested iterative scheme for computation of incompressible flows in long domains”, Computational Mechanics, 43 (2008) 73–80, doi: 10.1007/s00466-008-0276-0.

[139]   F. Rispoli, R. Saavedra, F. Menichini, and T.E. Tezduyar, “Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing”, Journal of Applied Mechanics, 76 (2009) 021209, doi: 10.1115/1.3057496.

[140]   M. Manguoglu, A.H. Sameh, F. Saied, T.E. Tezduyar, and S. Sathe, “Preconditioning techniques for nonsymmetric linear systems in the computation of incompressible flows”, Journal of Applied Mechanics, 76 (2009) 021204, doi: 10.1115/1.3059576.

[141]    T.J.R. Hughes, G. Scovazzi, and T.E. Tezduyar, “Stabilized methods for compressible flows”, Journal of Scientific Computing, 43 (2010) 343–368, DOI: 10.1007/s10915-008-9233-5, doi: 10.1007/s10915-008-9233-5.

[142]   M.A. Cruchaga, D.J. Celentano, and T.E. Tezduyar, “Computational modeling of the collapse of a liquid column over an obstacle and experimental validation”, Journal of Applied Mechanics, 76 (2009) 021202, doi: 10.1115/1.3057439.

[143]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: Influence of structural modeling”, Computational Mechanics, 43 (2008) 151–159, doi: 10.1007/s00466-008-0325-8.

[144]   A. Corsini, C. Menichini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms”, Journal of Applied Mechanics, 76 (2009) 021211, doi: 10.1115/1. 3062967.

[145]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3613–3621, doi: 10.1016/j.cma.2008.08.020.

[146]   L. Catabriga, D.A.F. de Souza, A.L.G.A. Coutinho, and T.E. Tezduyar, “Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZβ shock-capturing”, Journal of Applied Mechanics, 76 (2009) 021208, doi: 10.1115/1.3062968.

[147]   K. Takizawa, J. Christopher, T.E. Tezduyar, and S. Sathe, “Space–time finite element computation of arterial fluid–structure interactions with patient-specific data”, International Journal for Numerical Methods in Biomedical Engineering, 26 (2010) 101–116, doi: 10.1002/ cnm.1241.

[148]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms”, International Journal for Numerical Methods in Biomedical Engineering, 26 (2010) 336–347, doi: 10.1002/ cnm.1289.

[149]   M.-C. Hsu, Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “Improving stability of stabilized and multiscale formulations in flow simulations at small time steps”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 828–840, doi: 10.1016/ j.cma.2009.06.019.

[150]   T.E. Tezduyar, “Correct implementation of the Fluid–Object Interactions Subcomputation Technique (FOIST)”, Communications in Numerical Methods in Engineering, 25 (2009) 1055–1058, doi: 10.1002/cnm.1312.

[151]   T.E. Tezduyar, “Comments on ‘Simplex space-time meshes in finite element simulations”’, International Journal for Numerical Methods in Fluids, 60 (2009) 1289–1290, doi: 10.1002/fld.1933.

[152]   A. Corsini, C. Iossa, F. Rispoli, and T.E. Tezduyar, “A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors”, Computational Mechanics, 46 (2010) 159–167, doi: 10.1007/s00466-009-0441-0.

[153]   M. Manguoglu, K. Takizawa, A.H. Sameh, and T.E. Tezduyar, “Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement”, Computational Mechanics, 46 (2010) 83–89, doi: 10.1007/s00466-009-0426-z.

[154]   T.E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher, “Multiscale sequentially-coupled arterial FSI technique”, Computational Mechanics, 46 (2010) 17–29, doi: 10.1007/s00466-009-0423-2.

[155]   K. Takizawa, C. Moorman, S. Wright, J. Christopher, and T.E. Tezduyar, “Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions”, Computational Mechanics, 46 (2010) 31–41, doi: 10.1007/s00466-009-0425-0.

[156]   T.E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher, “Space–time finite element computation of complex fluid–structure interactions”, International Journal for Numerical Methods in Fluids, 64 (2010) 1201–1218, doi: 10.1002/fld.2221.

[157]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms”, Computational Mechanics, 46 (2010) 43–52, doi: 10.1007/s00466-009-0439-7.

[158]   T.E. Tezduyar, “Comments on ‘Adiabatic shock capturing in perfect gas hypersonic flows”’, International Journal for Numerical Methods in Fluids, 66 (2011) 935–938, doi: 10.1002/fld.2293.

[159]   T.E. Tezduyar, “Comments on paratrooper-separation modeling with the DSD/SST formulation and FOIST”, International Journal for Numerical Methods in Fluids, 66 (2011) 1068–1072, doi: 10.1002/fld.2299.

[160]   K. Takizawa, C. Moorman, S. Wright, T. Spielman, and T.E. Tezduyar, “Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes”, International Journal for Numerical Methods in Fluids, 65 (2011) 271–285, doi: 10.1002/fld. 2348.

[161]   K. Takizawa, C. Moorman, S. Wright, J. Purdue, T. McPhail, P.R. Chen, J. Warren, and T.E. Tezduyar, “Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms”, International Journal for Numerical Methods in Fluids, 65 (2011) 308–323, doi: 10.1002/fld.2360.

[162]   K. Takizawa, S. Wright, C. Moorman, and T.E. Tezduyar, “Fluid–structure interaction modeling of parachute clusters”, International Journal for Numerical Methods in Fluids, 65 (2011) 286–307, doi: 10.1002/fld.2359.

[163]   Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids, 65 (2011) 207–235, doi: 10.1002/fld.2400.

[164]   T.E. Tezduyar, “Comments on ‘Three-dimensional aerodynamic simulations of jumping paratroopers and falling cargo payloads”’, Journal of Aircraft, 48 (2011) 1471–1472, doi: 10.2514/1.C000186.

[165]   M. Manguoglu, K. Takizawa, A.H. Sameh, and T.E. Tezduyar, “Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement”, International Journal for Numerical Methods in Fluids, 65 (2011) 135–149, doi: 10.1002/fld.2415.

[166]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms”, International Journal for Numerical Methods in Fluids, 65 (2011) 324–340, doi: 10.1002/fld.2448.

[167]   A. Corsini, F. Rispoli, and T.E. Tezduyar, “Stabilized finite element computation of NOx emission in aero-engine combustors”, International Journal for Numerical Methods in Fluids, 65 (2011) 254–270, doi: 10.1002/fld.2451.

[168]   S. Takase, K. Kashiyama, S. Tanaka, and T.E. Tezduyar, “Space–time SUPG formulation of the shallow-water equations”, International Journal for Numerical Methods in Fluids, 64 (2010) 1379–1394, doi: 10.1002/fld.2464.

[169]   T.E. Tezduyar, K. Takizawa, T. Brummer, and P.R. Chen, “Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms”, International Journal for Numerical Methods in Biomedical Engineering, 27 (2011) 1665–1710, doi: 10.1002/cnm.1433.

[170]   K. Takizawa and T.E. Tezduyar, “Multiscale space–time fluid–structure interaction techniques”, Computational Mechanics, 48 (2011) 247–267, doi: 10.1007/s00466-011-0571-z.

[171]   K. Takizawa, B. Henicke, T.E. Tezduyar, M.-C. Hsu, and Y. Bazilevs, “Stabilized space–time computation of wind-turbine rotor aerodynamics”, Computational Mechanics, 48 (2011) 333–344, doi: 10.1007/s00466-011-0589-2.

[172]   K. Takizawa, T. Spielman, and T.E. Tezduyar, “Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters”, Computational Mechanics, 48 (2011) 345–364, doi: 10.1007/s00466-011-0590-9.

[173]   K. Takizawa, T. Spielman, C. Moorman, and T.E. Tezduyar, “Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design”, Journal of Applied Mechanics, 79 (2012) 010907, doi: 10.1115/1.4005070.

[174]   K. Takizawa, T. Brummer, T.E. Tezduyar, and P.R. Chen, “A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms”, Journal of Applied Mechanics, 79 (2012) 010908, doi: 10.1115/1.4005071.

[175]   K. Takizawa, B. Henicke, A. Puntel, T. Spielman, and T.E. Tezduyar, “Space–time computational techniques for the aerodynamics of flapping wings”, Journal of Applied Mechanics, 79 (2012) 010903, doi: 10.1115/1.4005073.

[176]   K. Takizawa, B. Henicke, D. Montes, T.E. Tezduyar, M.-C. Hsu, and Y. Bazilevs, “Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics”, Computational Mechanics, 48 (2011) 647–657, doi: 10.1007/ s00466-011-0614-5.

[177]   M. Manguoglu, K. Takizawa, A.H. Sameh, and T.E. Tezduyar, “A parallel sparse algorithm targeting arterial fluid mechanics computations”, Computational Mechanics, 48 (2011) 377–384, doi: 10.1007/s00466-011-0619-0.

[178]   S. Takase, K. Kashiyama, S. Tanaka, and T.E. Tezduyar, “Space–time SUPG finite element computation of shallow-water flows with moving shorelines”, Computational Mechanics, 48 (2011) 293–306, doi: 10.1007/s00466-011-0618-1.

[179]   A. Corsini, F. Rispoli, and T.E. Tezduyar, “Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique”, Journal of Applied Mechanics, 79 (2012) 010910, doi: 10.1115/1.4005060.

[180]   K. Takizawa and T.E. Tezduyar, “Computational methods for parachute fluid–structure interactions”, Archives of Computational Methods in Engineering, 19 (2012) 125–169, doi: 10.1007/s11831-012-9070-4.

[181]   K. Takizawa, Y. Bazilevs, and T.E. Tezduyar, “Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling”, Archives of Computational Methods in Engineering, 19 (2012) 171–225, doi: 10.1007/s11831-012-9071-3.

[182]   K. Takizawa and T.E. Tezduyar, “Space–time fluid–structure interaction methods”, Mathematical Models and Methods in Applied Sciences, 22 (supp02) (2012) 1230001, doi: 10.1142/S0218202512300013.

[183]   Y. Bazilevs, M.-C. Hsu, K. Takizawa, and T.E. Tezduyar, “ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction”, Mathematical Models and Methods in Applied Sciences, 22 (supp02) (2012) 1230002, doi: 10.1142/S0218202512300025.

[184]   P.A. Kler, L.D. Dalcin, R.R. Paz, and T.E. Tezduyar, “SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems”, Computational Mechanics, 51 (2013) 171–185, doi: 10.1007/s00466-012-0712-z.

[185]   K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust”, Computational Mechanics, 50 (2012) 743–760, doi: 10.1007/s00466-012-0759-x.

[186]   K. Takizawa, N. Kostov, A. Puntel, B. Henicke, and T.E. Tezduyar, “Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle”, Computational Mechanics, 50 (2012) 761–778, doi: 10.1007/s00466-012-0758-y.

[187]   K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent”, Computational Mechanics, 50 (2012) 675–686, doi: 10.1007/s00466-012-0760-4.

[188]   K. Takizawa, M. Fritze, D. Montes, T. Spielman, and T.E. Tezduyar, “Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity”, Computational Mechanics, 50 (2012) 835–854, doi: 10.1007/s00466-012-0761-3.

[189]   A. Corsini, F. Rispoli, A.G. Sheard, and T.E. Tezduyar, “Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations”, Computational Mechanics, 50 (2012) 695–705, doi: 10.1007/s00466-012-0789-4.

[190]   K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben, and T.E. Tezduyar, “Methods for FSI modeling of spacecraft parachute dynamics and cover separation”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 307–338, doi: 10.1142/ S0218202513400058.

[191]   K. Takizawa, D. Montes, S. McIntyre, and T.E. Tezduyar, “Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 223–248, doi: 10.1142/s0218202513400022.

[192]   K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms”, Computational Mechanics, 51 (2013) 1061–1073, doi: 10.1007/s00466-012-0790-y.

[193]   Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, “Challenges and directions in computational fluid–structure interaction”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 215–221, doi: 10.1142/S0218202513400010.

[194]   K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Computer modeling techniques for flapping-wing aerodynamics of a locust”, Computers & Fluids, 85 (2013) 125–134, doi: 10.1016/j.compfluid.2012.11.008.

[195]   K. Takizawa and T.E. Tezduyar, “Bringing them down safely”, Mechanical Engineering, 134 (12) (2012) 34–37.

[196]   M.A. Cruchaga, R.S. Reinoso, M.A. Storti, D.J. Celentano, and T.E. Tezduyar, “Finite element computation and experimental validation of sloshing in rectangular tanks”, Computational Mechanics, 52 (2013) 1301–1312, doi: 10.1007/s00466-013-0877-0.

[197]   K. Takizawa, T.E. Tezduyar, S. McIntyre, N. Kostov, R. Kolesar, and C. Habluetzel, “Space–time VMS computation of wind-turbine rotor and tower aerodynamics”, Computational Mechanics, 53 (2014) 1–15, doi: 10.1007/s00466-013-0888-x.

[198]   K. Takizawa, T.E. Tezduyar, J. Boben, N. Kostov, C. Boswell, and A. Buscher, “Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity”, Computational Mechanics, 52 (2013) 1351–1364, doi: 10.1007/ s00466-013-0880-5.

[199]   K. Takizawa and T.E. Tezduyar, “Space–time computation techniques with continuous representation in time (ST-C)”, Computational Mechanics, 53 (2014) 91–99, doi: 10.1007/ s00466-013-0895-y.

[200]   K. Takizawa, H. Takagi, T.E. Tezduyar, and R. Torii, “Estimation of element-based zero-stress state for arterial FSI computations”, Computational Mechanics, published online, DOI: 10.1007/s00466-013-0919-7, September 2013, doi: 10.1007/s00466-013-0919-7.

[201]   K. Takizawa, T.E. Tezduyar, A. Buscher, and S. Asada, “Space–time interface-tracking with topology change (ST-TC)”, Computational Mechanics, published online, DOI: 10.1007/s00466-013-0935-7, October 2013, doi: 10.1007/s00466-013-0935-7.

[202]   K. Takizawa, T.E. Tezduyar, and N. Kostov, “Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV”, Computational Mechanics, 54 (2014) 213–233, doi: 10.1007/s00466-014-0980-x.

[203]   K. Takizawa, Y. Bazilevs, T.E. Tezduyar, C.C. Long, A.L. Marsden, and K. Schjodt, “ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling”, Mathematical Models and Methods in Applied Sciences, published online, DOI: 10.1142/S0218202514500250, April 2014, doi: 10.1142/S0218202514500250.

[204]   K. Takizawa, Y. Bazilevs, T.E. Tezduyar, M.-C. Hsu, O. Øiseth, K.M. Mathisen, N. Kostov, and S. McIntyre, “Engineering analysis and design with ALE-VMS and space–time methods”, Archives of Computational Methods in Engineering, published online, DOI: 10.1007/s11831-014-9113-0, May 2014, doi: 10.1007/s11831-014-9113-0.

[205]   Y. Bazilevs, K. Takizawa, T.E. Tezduyar, M.-C. Hsu, N. Kostov, and S. McIntyre, “Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods”, Archives of Computational Methods in Engineering, published online, DOI: 10.1007/s11831-014-9119-7, May 2014, doi: 10.1007/s11831-014-9119-7.

[206]   K. Takizawa, T.E. Tezduyar, A. Buscher, and S. Asada, “Space–time fluid mechanics computation of heart valve models”, Computational Mechanics, to appear, DOI: 10.1007/s00466-014-1046-9, 2014, doi: 10.1007/s00466-014-1046-9.

[207]   K. Takizawa, T.E. Tezduyar, C. Boswell, R. Kolesar, and K. Montel, “FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes”, Computational Mechanics, to appear, DOI: 10.1007/s00466-014-1052-y, 2014, doi: 10.1007/s00466-014-1052-y.

[208]   K. Takizawa, R. Torii, H. Takagi, T.E. Tezduyar, and X.Y. Xu, “Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates”, Computational Mechanics, published online, DOI: 10.1007/s00466-014-1049-6, July 2014, doi: 10.1007/s00466-014-1049-6.

[209]   A. Corsini, F. Rispoli, A.G. Sheard, K. Takizawa, T.E. Tezduyar, and P. Venturini, “A variational multiscale method for particle-cloud tracking in turbomachinery flows”, Computational Mechanics, to appear, DOI: 10.1007/s00466-014-1050-0, 2014, doi: 10.1007/ s00466-014-1050-0.

Other Journal Articles

[1]   M. Behr, T.E. Tezduyar, and H. Higuchi, “Wake interference behind two flat plates normal to the flow: A finite-element study”, Theoretical and Computational Fluid Mechanics, 2 (1991) 223–250, doi: 10.1007/BF00271639.

[2]   Y.J. Park, H.A. Deans, and T.E. Tezduyar, “Thermal effects on single-well chemical tracer tests for measuring residual oil saturation”, Society of Petroleum Engineers Formation Evaluation, 190 (1991) 401–408, doi: 10.2118/19683-PA.

[3]   S. Mittal, A. Ratner, D. Hastreiter, and T.E. Tezduyar, “Space–time finite element computation of incompressible flows with emphasis on flows involving oscillating cylinders”, International Video Journal of Engineering Research, 1 (1991) 83–96.

[4]   S.K. Aliabadi, S.E. Ray, and T.E. Tezduyar, “SUPG finite element computation of compressible flows with the entropy and conservation variables formulations”, Computational Mechanics, 11 (1993) 300–312, doi: 10.1007/BF00350089.

[5]   A.A. Johnson, T.E. Tezduyar, and J. Liou, “Numerical simulation of flows past periodic arrays of cylinders”, Computational Mechanics, 11 (1993) 371–383, doi: 10.1007/ BF00350094.

[6]   T.E. Tezduyar, “Site report: The Army High Performance Computing Research Center”, IEEE Computational Science & Engineering, Summer (1994) 6–8.

[7]   J. Chandra and T. Tezduyar, “High performance computing: an Army initiative”, Army RD& A, May–June (1995) 28–31.

[8]   V. Kalro and T. Tezduyar, “Parallel iterative computational methods for 3D finite element flow simulations”, Computer Assisted Mechanics and Engineering Sciences, 5 (1998) 173–183.

[9]   Y. Osawa and T. Tezduyar, “A multi-domain method for 3D computation of wake flow behind a circular cylinder”, Computational Fluid Dynamics Journal, 8 (1999) 296–308.

[10]   Y. Osawa and T. Tezduyar, “3D simulation and visualization of unsteady wake flow behind a cylinder”, Journal of Visualization, 2 (1999) 127–134, doi: 10.1007/BF03181515.

[11]   W.B. Sturek, T.E. Tezduyar, and P. Muzio, “Army High Performance Computing Research Center: A unique resource for defense basic research and education”, Army RD& A, September–October (1999) 44–45.

[12]   A.M.K. Anderson and T.E. Tezduyar, “A K-PhD education program in flow simulation and modeling”, Computational Fluid Dynamics Journal, 9 (2000) 242–251.

[13]   T. Tezduyar and S. Sathe, “Stabilization parameters in SUPG and PSPG formulations”, Journal of Computational and Applied Mechanics, 4 (2003) 71–88.

[14]   T.E. Tezduyar, “Calculation of the stabilization parameters in finite element formulations of flow problems”, in S.R. Idelsohn and V. Sonzogni, editors, Applications of Computational Mechanics in Structures and Fluids, 1–19, CIMNE, Barcelona, Spain, 2005.

[15]   K. Stein, T. Tezduyar, R. Benney, M. Accorsi, and H. Johari, “Computational modeling of parachute fluid-structure interactions”, Computational Fluid Dynamics Journal, 12 (2003) 516–526.

[16]   T.E. Tezduyar, “Stabilized finite element methods for flows with moving boundaries and interfaces”, HERMIS: The International Journal of Computer Mathematics and its Applications, 4 (2003) 63–88.

[17]   L. Catabriga, A.L.G.A. Coutinho, and T.E. Tezduyar, “Compressible flow SUPG stabilization parameters computed from element-edge matrices”, Computational Fluid Dynamics Journal, 13 (2004) 450–459.

[18]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Influence of wall elasticity on image-based blood flow simulation”, Japan Society of Mechanical Engineers Journal Series A, 70 (2004) 1224–1231, in Japanese.

[19]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Coupling 3D fluid–structure interaction modeling of cerebral aneurysm with 0D arterial network model as boundary conditions”, Transactions of the Japan Society for Simulation Technology, 1 (2009) 81–90.

[20]   K. Takizawa and T.E. Tezduyar, “Main aspects of the space–time computational FSI techniques and examples of challenging problems solved”, Mechanical Engineering Reviews, 1 (2014) CM0005, inaugural issue, doi: 10.1299/mer.2014cm0005.