For more information:
tezduyar@gmail.com

Journal Publications (Last update: Mar 22, 2016)
 [220]
 K. Takizawa, T.E. Tezduyar, Y. Otoguro, T. Terahara, T. Kuraishi, and H. Hattori, “Turbocharger flow computations with the space–time isogeometric analysis (STIGA),” Computers & Fluids, to appear, DOI: 10.1016/j.compfluid.2016.02.021 (2016), 10.1016/j.compfluid.2016.02.021
 [219]
 K. Takizawa, T.E. Tezduyar, and H. Hattori, “Computational analysis of flowdriven string dynamics in turbomachinery,” Computers & Fluids, to appear, DOI: 10.1016/j.compfluid.2016.02.019 (2016), 10.1016/j.compfluid.2016.02.019
 [218]
 K. Takizawa, T.E. Tezduyar, T. Kuraishi, S. Tabata, and H. Takagi, “Computational thermofluid analysis of a disk brake,” Computational Mechanics, published online, DOI: 10.1007/s0046601612724 (2016), 10.1007/s0046601612724
 [217]
 Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, “New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods,” Mathematical Models and Methods in Applied Sciences, 25 (2015) 2217–2226, 10.1142/S0218202515020029
 [216]
 K. Takizawa, T.E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel, “Space–time VMS method for flow computations with slip interfaces (STSI),” Mathematical Models and Methods in Applied Sciences, 25 (2015) 2377–2406, 10.1142/S0218202515400126
 [215]
 F. Rispoli, G. Delibra, P. Venturini, A. Corsini, R. Saavedra, and T.E. Tezduyar, “Particle tracking and particle–shock interaction in compressibleflow computations with the VSGS stabilization and YZβ shockcapturing,” Computational Mechanics, 55 (2015) 1201–1209, 10.1007/s0046601511603
 [214]
 K. Takizawa, T.E. Tezduyar, and T. Kuraishi, “Multiscale ST methods for thermofluid analysis of a ground vehicle and its tires,” Mathematical Models and Methods in Applied Sciences, 25 (2015) 2227–2255, 10.1142/S0218202515400072
 [213]
 K. Takizawa, T.E. Tezduyar, and R. Kolesar, “FSI modeling of the ORION spacecraft drogue parachutes,” Computational Mechanics, 55 (2015) 1167–1179, 10.1007/s004660141108z
 [212]
 K. Takizawa, T.E. Tezduyar, and A. Buscher, “Space–time computational analysis of MAV flappingwing aerodynamics with wing clapping,” Computational Mechanics, 55 (2015) 1131–1141, 10.1007/s0046601410950
 [211]
 K. Takizawa, T.E. Tezduyar, C. Boswell, Y. Tsutsui, and K. Montel, “Special methods for aerodynamicmoment calculations from parachute FSI modeling,” Computational Mechanics, 55 (2015) 1059–1069, 10.1007/s0046601410745
 [210]
 K. Takizawa, T.E. Tezduyar, R. Kolesar, C. Boswell, T. Kanai, and K. Montel, “Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes,” Computational Mechanics, 54 (2014) 1461–1476, 10.1007/s0046601410692
 [209]
 A. Corsini, F. Rispoli, A.G. Sheard, K. Takizawa, T.E. Tezduyar, and P. Venturini, “A variational multiscale method for particlecloud tracking in turbomachinery flows,” Computational Mechanics, 54 (2014) 1191–1202, 10.1007/s0046601410500
 [208]
 K. Takizawa, R. Torii, H. Takagi, T.E. Tezduyar, and X.Y. Xu, “Coronary arterial dynamics computation with medicalimagebased timedependent anatomical models and elementbased zerostress state estimates,” Computational Mechanics, 54 (2014) 1047–1053, 10.1007/s0046601410496
 [207]
 K. Takizawa, T.E. Tezduyar, C. Boswell, R. Kolesar, and K. Montel, “FSI modeling of the reefed stages and disreefing of the ORION spacecraft parachutes,” Computational Mechanics, 54 (2014) 1203–1220, 10.1007/s004660141052y
 [206]
 K. Takizawa, T.E. Tezduyar, A Buscher, and S. Asada, “Space–time fluid mechanics computation of heart valve models,” Computational Mechanics, 54 (2014) 973–986, 10.1007/s0046601410469
 [205]
 Y. Bazilevs, K. Takizawa, T.E. Tezduyar, M.C. Hsu, N. Kostov, and S. McIntyre, “Aerodynamic and FSI analysis of wind turbines with the ALEVMS and STVMS methods,” Archives of Computational Methods in Engineering, 21 (2014) 359–398, 10.1007/s1183101491197
 [204]
 K. Takizawa, Y. Bazilevs, T.E. Tezduyar, M.C. Hsu, O. Øiseth, K.M. Mathisen, N. Kostov, and S. McIntyre, “Engineering analysis and design with ALEVMS and space–time methods,” Archives of Computational Methods in Engineering, 21 (2014) 481–508, 10.1007/s1183101491130
 [203]
 K. Takizawa, Y. Bazilevs, T.E. Tezduyar, C.C. Long, A.L. Marsden, and K. Schjodt, “ST and ALEVMS methods for patientspecific cardiovascular fluid mechanics modeling,” Mathematical Models and Methods in Applied Sciences, 24 (2014) 2437–2486, 10.1142/S0218202514500250
 [202]
 K. Takizawa, T.E. Tezduyar, and N. Kostov, “Sequentiallycoupled space–time FSI analysis of bioinspired flappingwing aerodynamics of an MAV,” Computational Mechanics, 54 (2014) 213–233, 10.1007/s004660140980x
 [201]
 K. Takizawa, T.E. Tezduyar, A Buscher, and S. Asada, “Space–time interfacetracking with topology change (STTC),” Computational Mechanics, 54 (2014) 955–971, 10.1007/s0046601309357
 [200]
 K. Takizawa, H. Takagi, T.E. Tezduyar, and R. Torii, “Estimation of elementbased zerostress state for arterial FSI computations,” Computational Mechanics, 54 (2014) 895–910, 10.1007/s0046601309197
 [199]
 K. Takizawa, and T.E. Tezduyar, “Space–time computation techniques with continuous representation in time (STC),” Computational Mechanics, 53 (2014) 91–99, 10.1007/s004660130895y
 [198]
 K. Takizawa, T.E. Tezduyar, J. Boben, N. Kostov, C. Boswell, and A. Buscher, “Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity,” Computational Mechanics, 52 (2013) 1351–1364, 10.1007/s0046601308805
 [197]
 K. Takizawa, T.E. Tezduyar, S. McIntyre, N. Kostov, R. Kolesar, and C. Habluetzel, “Space–time VMS computation of windturbine rotor and tower aerodynamics,” Computational Mechanics, 53 (2014) 1–15, 10.1007/s004660130888x
 [196]
 M.A. Cruchaga, R.S. Reinoso, M.A. Storti, D.J. Celentano, and T.E. Tezduyar, “Finite element computation and experimental validation of sloshing in rectangular tanks,” Computational Mechanics, 52 (2013) 1301–1312, 10.1007/s0046601308770
 [195]
 K. Takizawa, and T.E. Tezduyar, “Bringing them down safely,” Mechanical Engineering, 134 (2012) 34–37
 [194]
 K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Computer modeling techniques for flappingwing aerodynamics of a locust,” Computers & Fluids, 85 (2013) 125–134, 10.1016/j.compfluid.2012.11.008
 [193]
 Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, “Challenges and directions in computational fluid–structure interaction,” Mathematical Models and Methods in Applied Sciences, 23 (2013) 215–221, 10.1142/S0218202513400010
 [192]
 K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patientspecific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms,” Computational Mechanics, 51 (2013) 1061–1073, 10.1007/s004660120790y
 [191]
 K. Takizawa, D. Montes, S. McIntyre, and T.E. Tezduyar, “Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers,” Mathematical Models and Methods in Applied Sciences, 23 (2013) 223–248, 10.1142/s0218202513400022
 [190]
 K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben, and T.E. Tezduyar, “Methods for FSI modeling of spacecraft parachute dynamics and cover separation,” Mathematical Models and Methods in Applied Sciences, 23 (2013) 307–338, 10.1142/S0218202513400058
 [189]
 A. Corsini, F. Rispoli, A.G. Sheard, and T.E. Tezduyar, “Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations,” Computational Mechanics, 50 (2012) 695–705, 10.1007/s0046601207894
 [188]
 K. Takizawa, M. Fritze, D. Montes, T. Spielman, and T.E. Tezduyar, “Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity,” Computational Mechanics, 50 (2012) 835–854, 10.1007/s0046601207613
 [187]
 K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patientspecific computer modeling of blood flow in cerebral arteries with aneurysm and stent,” Computational Mechanics, 50 (2012) 675–686, 10.1007/s0046601207604
 [186]
 K. Takizawa, N. Kostov, A. Puntel, B. Henicke, and T.E. Tezduyar, “Space–time computational analysis of bioinspired flappingwing aerodynamics of a micro aerial vehicle,” Computational Mechanics, 50 (2012) 761–778, 10.1007/s004660120758y
 [185]
 K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust,” Computational Mechanics, 50 (2012) 743–760, 10.1007/s004660120759x
 [184]
 P.A. Kler, L.D. Dalcin, R.R. Paz, and T.E. Tezduyar, “SUPG and discontinuitycapturing methods for coupled fluid mechanics and electrochemical transport problems,” Computational Mechanics, 51 (2013) 171–185, 10.1007/s004660120712z
 [183]
 Y. Bazilevs, M.C. Hsu, K. Takizawa, and T.E. Tezduyar, “ALEVMS and STVMS methods for computer modeling of windturbine rotor aerodynamics and fluid–structure interaction,” Mathematical Models and Methods in Applied Sciences, 22 (2012) 1230002, 10.1142/S0218202512300025
 [182]
 K. Takizawa, and T.E. Tezduyar, “Space–time fluid–structure interaction methods,” Mathematical Models and Methods in Applied Sciences, 22 (2012) 1230001, 10.1142/S0218202512300013
 [181]
 K. Takizawa, Y. Bazilevs, and T.E. Tezduyar, “Space–time and ALEVMS techniques for patientspecific cardiovascular fluid–structure interaction modeling,” Archives of Computational Methods in Engineering, 19 (2012) 171–225, 10.1007/s1183101290713
 [180]
 K. Takizawa, and T.E. Tezduyar, “Computational methods for parachute fluid–structure interactions,” Archives of Computational Methods in Engineering, 19 (2012) 125–169, 10.1007/s1183101290704
 [179]
 A. Corsini, F. Rispoli, and T.E. Tezduyar, “Computer modeling of waveenergy air turbines with the supg/pspg formulation and discontinuitycapturing technique,” Journal of Applied Mechanics, 79 (2012) 010910, 10.1115/1.4005060
 [178]
 S. Takase, K. Kashiyama, S. Tanaka, and T.E. Tezduyar, “Space–time SUPG finite element computation of shallowwater flows with moving shorelines,” Computational Mechanics, 48 (2011) 293–306, 10.1007/s0046601106181
 [177]
 M. Manguoglu, K. Takizawa, A.H. Sameh, and T.E. Tezduyar, “A parallel sparse algorithm targeting arterial fluid mechanics computations,” Computational Mechanics, 48 (2011) 377–384, 10.1007/s0046601106190
 [176]
 K. Takizawa, B. Henicke, D. Montes, T.E. Tezduyar, M.C. Hsu, and Y. Bazilevs, “Numericalperformance studies for the stabilized space–time computation of windturbine rotor aerodynamics,” Computational Mechanics, 48 (2011) 647–657, 10.1007/s0046601106145
 [175]
 K. Takizawa, B. Henicke, A. Puntel, T. Spielman, and T.E. Tezduyar, “Space–time computational techniques for the aerodynamics of flapping wings,” Journal of Applied Mechanics, 79 (2012) 010903, 10.1115/1.4005073
 [174]
 K. Takizawa, T. Brummer, T.E. Tezduyar, and P.R. Chen, “A comparative study based on patientspecific fluid–structure interaction modeling of cerebral aneurysms,” Journal of Applied Mechanics, 79 (2012) 010908, 10.1115/1.4005071
 [173]
 K. Takizawa, T. Spielman, C. Moorman, and T.E. Tezduyar, “Fluid–structure interaction modeling of spacecraft parachutes for simulationbased design,” Journal of Applied Mechanics, 79 (2012) 010907, 10.1115/1.4005070
 [172]
 K. Takizawa, T. Spielman, and T.E. Tezduyar, “Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters,” Computational Mechanics, 48 (2011) 345–364, 10.1007/s0046601105909
 [171]
 K. Takizawa, B. Henicke, T.E. Tezduyar, M.C. Hsu, and Y. Bazilevs, “Stabilized space–time computation of windturbine rotor aerodynamics,” Computational Mechanics, 48 (2011) 333–344, 10.1007/s0046601105892
 [170]
 K. Takizawa, and T.E. Tezduyar, “Multiscale space–time fluid–structure interaction techniques,” Computational Mechanics, 48 (2011) 247–267, 10.1007/s004660110571z
 [169]
 T.E. Tezduyar, K. Takizawa, T. Brummer, and P.R. Chen, “Space–time fluid–structure interaction modeling of patientspecific cerebral aneurysms,” International Journal for Numerical Methods in Biomedical Engineering, 27 (2011) 1665–1710, 10.1002/cnm.1433
 [168]
 S. Takase, K. Kashiyama, S. Tanaka, and T.E. Tezduyar, “Space–time SUPG formulation of the shallowwater equations,” International Journal for Numerical Methods in Fluids, 64 (2010) 1379–1394, 10.1002/fld.2464
 [167]
 A. Corsini, F. Rispoli, and T.E. Tezduyar, “Stabilized finite element computation of NOx emission in aeroengine combustors,” International Journal for Numerical Methods in Fluids, 65 (2011) 254–270, 10.1002/fld.2451
 [166]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Influencing factors in imagebased fluid–structure interaction computation of cerebral aneurysms,” International Journal for Numerical Methods in Fluids, 65 (2011) 324–340, 10.1002/fld.2448
 [165]
 M. Manguoglu, K. Takizawa, A.H. Sameh, and T.E. Tezduyar, “Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement,” International Journal for Numerical Methods in Fluids, 65 (2011) 135–149, 10.1002/fld.2415
 [164]
 T.E. Tezduyar, “Comment on ‘Threedimensional aerodynamic simulations of jumping paratroopers and falling cargo payloads’,” Journal of Aircraft, 48 (2011) 1471–1472, 10.2514/1.C000186
 [163]
 Y. Bazilevs, M.C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics,” International Journal for Numerical Methods in Fluids, 65 (2011) 207–235, 10.1002/fld.2400
 [162]
 K. Takizawa, S. Wright, C. Moorman, and T.E. Tezduyar, “Fluid–structure interaction modeling of parachute clusters,” International Journal for Numerical Methods in Fluids, 65 (2011) 286–307, 10.1002/fld.2359
 [161]
 K. Takizawa, C. Moorman, S. Wright, J. Purdue, T. McPhail, P.R. Chen, J. Warren, and T.E. Tezduyar, “Patientspecific arterial fluid–structure interaction modeling of cerebral aneurysms,” International Journal for Numerical Methods in Fluids, 65 (2011) 308–323, 10.1002/fld.2360
 [160]
 K. Takizawa, C. Moorman, S. Wright, T. Spielman, and T.E. Tezduyar, “Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes,” International Journal for Numerical Methods in Fluids, 65 (2011) 271–285, 10.1002/fld.2348
 [159]
 T.E. Tezduyar, “Comments on paratrooperseparation modeling with the dsd/sst formulation and FOIST,” International Journal for Numerical Methods in Fluids, 66 (2011) 1068–1072, 10.1002/fld.2299
 [158]
 T.E. Tezduyar, “Comments on ‘Adiabatic shock capturing in perfect gas hypersonic flows’,” International Journal for Numerical Methods in Fluids, 66 (2011) 935–938, 10.1002/fld.2293
 [157]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms,” Computational Mechanics, 46 (2010) 43–52, 10.1007/s0046600904397
 [156]
 T.E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher, “Space–time finite element computation of complex fluid–structure interactions,” International Journal for Numerical Methods in Fluids, 64 (2010) 1201–1218, 10.1002/fld.2221
 [155]
 K. Takizawa, C. Moorman, S. Wright, J. Christopher, and T.E. Tezduyar, “Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions,” Computational Mechanics, 46 (2010) 31–41, 10.1007/s0046600904250
 [154]
 T.E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher, “Multiscale sequentiallycoupled arterial FSI technique,” Computational Mechanics, 46 (2010) 17–29, 10.1007/s0046600904232
 [153]
 M. Manguoglu, K. Takizawa, A.H. Sameh, and T.E. Tezduyar, “Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement,” Computational Mechanics, 46 (2010) 83–89, 10.1007/s004660090426z
 [152]
 A. Corsini, C. Iossa, F. Rispoli, and T.E. Tezduyar, “A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors,” Computational Mechanics, 46 (2010) 159–167, 10.1007/s0046600904410
 [151]
 T.E. Tezduyar, “Comments on ‘Simplex spacetime meshes in finite element simulations’,” International Journal for Numerical Methods in Fluids, 60 (2009) 1289–1290, 10.1002/fld.1933
 [150]
 T.E. Tezduyar, “Correct implementation of the Fluid–Object Interactions Subcomputation Technique (FOIST),” Communications in Numerical Methods in Engineering, 25 (2009) 1055–1058, 10.1002/cnm.1312
 [149]
 M.C. Hsu, Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “Improving stability of stabilized and multiscale formulations in flow simulations at small time steps,” Computer Methods in Applied Mechanics and Engineering, 199 (2010) 828–840, 10.1016/j.cma.2009.06.019
 [148]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms,” International Journal for Numerical Methods in Biomedical Engineering, 26 (2010) 336–347, 10.1002/cnm.1289
 [147]
 K. Takizawa, J. Christopher, T.E. Tezduyar, and S. Sathe, “Space–time finite element computation of arterial fluid–structure interactions with patientspecific data,” International Journal for Numerical Methods in Biomedical Engineering, 26 (2010) 101–116, 10.1002/cnm.1241
 [146]
 L. Catabriga, D.A.F.de Souza, A.L.G.A. Coutinho, and T.E. Tezduyar, “Threedimensional edgebased SUPG computation of inviscid compressible flows with YZβ shockcapturing,” Journal of Applied Mechanics, 76 (2009) 021208, 10.1115/1.3062968
 [145]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes,” Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3613–3621, 10.1016/j.cma.2008.08.020
 [144]
 A. Corsini, C. Menichini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms,” Journal of Applied Mechanics, 76 (2009) 021211, 10.1115/1.3062967
 [143]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Fluid–structure interaction modeling of a patientspecific cerebral aneurysm: Influence of structural modeling,” Computational Mechanics, 43 (2008) 151–159, 10.1007/s0046600803258
 [142]
 M.A. Cruchaga, D.J. Celentano, and T.E. Tezduyar, “Computational modeling of the collapse of a liquid column over an obstacle and experimental validation,” Journal of Applied Mechanics, 76 (2009) 021202, 10.1115/1.3057439
 [141]
 T.J.R. Hughes, G. Scovazzi, and T.E. Tezduyar, “Stabilized methods for compressible flows,” Journal of Scientific Computing, 43 (2010) 343–368 DOI: 10.1007/s1091500892335, 10.1007/s1091500892335
 [140]
 M. Manguoglu, A.H. Sameh, F. Saied, T.E. Tezduyar, and S. Sathe, “Preconditioning techniques for nonsymmetric linear systems in the computation of incompressible flows,” Journal of Applied Mechanics, 76 (2009) 021204, 10.1115/1.3059576
 [139]
 F. Rispoli, R. Saavedra, F. Menichini, and T.E. Tezduyar, “Computation of inviscid supersonic flows around cylinders and spheres with the VSGS stabilization and YZβ shockcapturing,” Journal of Applied Mechanics, 76 (2009) 021209, 10.1115/1.3057496
 [138]
 M. Manguoglu, A.H. Sameh, T.E. Tezduyar, and S. Sathe, “A nested iterative scheme for computation of incompressible flows in long domains,” Computational Mechanics, 43 (2008) 73–80, 10.1007/s0046600802760
 [137]
 T.E. Tezduyar, M. Schwaab, and S. Sathe, “SequentiallyCoupled Arterial Fluid–Structure Interaction (SCAFSI) technique,” Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3524–3533, 10.1016/j.cma.2008.05.024
 [136]
 S. Sathe, and T.E. Tezduyar, “Modeling of fluid–structure interactions with the space–time finite elements: Contact problems,” Computational Mechanics, 43 (2008) 51–60, 10.1007/s0046600802996
 [135]
 T.E. Tezduyar, S. Sathe, M. Schwaab, J. Pausewang, J. Christopher, and J. Crabtree, “Fluid–structure interaction modeling of ringsail parachutes,” Computational Mechanics, 43 (2008) 133–142, 10.1007/s0046600802608
 [134]
 T.E. Tezduyar, S. Sathe, J. Pausewang, M. Schwaab, J. Christopher, and J. Crabtree, “Interface projection techniques for fluid–structure interaction modeling with movingmesh methods,” Computational Mechanics, 43 (2008) 39–49, 10.1007/s0046600802617
 [133]
 T.E. Tezduyar, S. Ramakrishnan, and S. Sathe, “Stabilized formulations for incompressible flows with thermal coupling,” International Journal for Numerical Methods in Fluids, 57 (2008) 1189–1209, 10.1002/fld.1743
 [132]
 T.E. Tezduyar, S. Sathe, M. Schwaab, and B.S. Conklin, “Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique,” International Journal for Numerical Methods in Fluids, 57 (2008) 601–629, 10.1002/fld.1633
 [131]
 M.A. Cruchaga, D.J. Celentano, and T.E. Tezduyar, “A numerical model based on the Mixed InterfaceTracking/InterfaceCapturing Technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces,” International Journal for Numerical Methods in Fluids, 54 (2007) 1021–1030, 10.1002/fld.1498
 [130]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm — Dependence of the effect on the aneurysm shape,” International Journal for Numerical Methods in Fluids, 54 (2007) 995–1009, 10.1002/fld.1497
 [129]
 Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “YZβ discontinuitycapturing for advectiondominated processes with application to arterial drug delivery,” International Journal for Numerical Methods in Fluids, 54 (2007) 593–608, 10.1002/fld.1484
 [128]
 K. Takizawa, K. Tanizawa, T. Yabe, and T.E. Tezduyar, “Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids,” International Journal for Numerical Methods in Fluids, 54 (2007) 1011–1019, 10.1002/fld.1466
 [127]
 T. Yabe, K. Takizawa, T.E. Tezduyar, and H.N. Im, “Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids — An overview,” International Journal for Numerical Methods in Fluids, 54 (2007) 841–853, 10.1002/fld.1473
 [126]
 T.E. Tezduyar, S. Sathe, T. Cragin, B. Nanna, B.S. Conklin, J. Pausewang, and M. Schwaab, “Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics,” International Journal for Numerical Methods in Fluids, 54 (2007) 901–922, 10.1002/fld.1443
 [125]
 T.E. Tezduyar, and S. Sathe, “Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques,” International Journal for Numerical Methods in Fluids, 54 (2007) 855–900, 10.1002/fld.1430
 [124]
 F. Rispoli, R. Saavedra, A. Corsini, and T.E. Tezduyar, “Computation of inviscid compressible flows with the VSGS stabilization and YZβ shockcapturing,” International Journal for Numerical Methods in Fluids, 54 (2007) 695–706, 10.1002/fld.1447
 [123]
 K. Takizawa, T. Yabe, Y. Tsugawa, T.E. Tezduyar, and H. Mizoe, “Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids,” Computational Mechanics, 40 (2007) 167–183, 10.1007/s0046600600932
 [122]
 T.E. Tezduyar, and S. Sathe, “Enhanceddiscretization selective stabilization procedure (EDSSP),” Computational Mechanics, 38 (2006) 456–468, 10.1007/s0046600600567
 [121]
 A. Corsini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “Improved discontinuitycapturing finite element techniques for reaction effects in turbulence computation,” Computational Mechanics, 38 (2006) 356–364, 10.1007/s004660060045x
 [120]
 M.A. Cruchaga, D.J. Celentano, and T.E. Tezduyar, “Collapse of a liquid column: numerical simulation and experimental validation,” Computational Mechanics, 39 (2007) 453–476, 10.1007/s004660060043z
 [119]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures,” Computational Mechanics, 38 (2006) 482–490, 10.1007/s0046600600656
 [118]
 T.E. Tezduyar, M. Senga, and D. Vicker, “Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shockcapturing,” Computational Mechanics, 38 (2006) 469–481, 10.1007/s0046600500256
 [117]
 L. Catabriga, A.L.G.A. Coutinho, and T.E. Tezduyar, “Compressible flow SUPG parameters computed from degreeoffreedom submatrices,” Computational Mechanics, 38 (2006) 334–343, 10.1007/s0046600600331
 [116]
 T.E. Tezduyar, S. Sathe, and K. Stein, “Solution techniques for the fullydiscretized equations in computation of fluid–structure interactions with the space–time formulations,” Computer Methods in Applied Mechanics and Engineering, 195 (2006) 5743–5753, 10.1016/j.cma.2005.08.023
 [115]
 J.E. Akin, T.E. Tezduyar, and M. Ungor, “Computation of flow problems with the mixed interfacetracking/interfacecapturing technique (MITICT),” Computers & Fluids, 36 (2007) 2–11, 10.1016/j.compfluid.2005.07.008
 [114]
 F. Rispoli, A. Corsini, and T.E. Tezduyar, “Finite element computation of turbulent flows with the discontinuitycapturing directional dissipation (DCDD),” Computers & Fluids, 36 (2007) 121–126, 10.1016/j.compfluid.2005.07.004
 [113]
 T. Washio, T. Hisada, H. Watanabe, and T.E. Tezduyar, “A robust preconditioner for fluid–structure interaction problems,” Computer Methods in Applied Mechanics and Engineering, 194 (2005) 4027–4047, 10.1016/j.cma.2004.10.001
 [112]
 T.E. Tezduyar, and M. Senga, “SUPG finite element computation of inviscid supersonic flows with YZβ shockcapturing,” Computers & Fluids, 36 (2007) 147–159, 10.1016/j.compfluid.2005.07.009
 [111]
 S. Sathe, R. Benney, R. Charles, E. Doucette, J. Miletti, M. Senga, K. Stein, and T.E. Tezduyar, “Fluid–structure interaction modeling of complex parachute designs with the space–time finite element techniques,” Computers & Fluids, 36 (2007) 127–135, 10.1016/j.compfluid.2005.07.010
 [110]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Influence of wall elasticity in patientspecific hemodynamic simulations,” Computers & Fluids, 36 (2007) 160–168, 10.1016/j.compfluid.2005.07.014
 [109]
 L. Catabriga, A.L.G.A. Coutinho, and T.E. Tezduyar, “Compressible flow SUPG parameters computed from element matrices,” Communications in Numerical Methods in Engineering, 21 (2005) 465–476, 10.1002/cnm.759
 [107]
 T.E. Tezduyar, “Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces,” Computers & Fluids, 36 (2007) 191–206, 10.1016/j.compfluid.2005.02.011
 [106]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Computer modeling of cardiovascular fluid–structure interactions with the DeformingSpatialDomain/Stabilized Space–Time formulation,” Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1885–1895, 10.1016/j.cma.2005.05.050
 [105]
 T.E. Tezduyar, and A. Sameh, “Parallel finite element computations in fluid mechanics,” Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1872–1884, 10.1016/j.cma.2005.05.038
 [104]
 T.E. Tezduyar, and M. Senga, “Stabilization and shockcapturing parameters in SUPG formulation of compressible flows,” Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1621–1632, 10.1016/j.cma.2005.05.032
 [103]
 T.E. Tezduyar, “Interfacetracking and interfacecapturing techniques for finite element computation of moving boundaries and interfaces,” Computer Methods in Applied Mechanics and Engineering, 195 (2006) 2983–3000, 10.1016/j.cma.2004.09.018
 [102]
 M.A. Cruchaga, D.J. Celentano, and T.E. Tezduyar, “Movinginterface computations with the edgetracked interface locator technique (ETILT),” International Journal for Numerical Methods in Fluids, 47 (2005) 451–469, 10.1002/fld.825
 [101]
 T.E. Tezduyar, and S. Sathe, “Enhanceddiscretization successive update method (EDSUM),” International Journal for Numerical Methods in Fluids, 47 (2005) 633–654, 10.1002/fld.836
 [100]
 T.E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, “Space–time finite element techniques for computation of fluid–structure interactions,” Computer Methods in Applied Mechanics and Engineering, 195 (2006) 2002–2027, 10.1016/j.cma.2004.09.014
 [99]
 K. Stein, T.E. Tezduyar, S. Sathe, R. Benney, and R. Charles, “Fluidstructure interaction modeling of parachute softlanding dynamics,” International Journal for Numerical Methods in Fluids, 47 (2005) 619–631, 10.1002/fld.835
 [98]
 J.E. Akin, and T.E. Tezduyar, “Calculation of the advective limit of the SUPG stabilization parameter for linear and higherorder elements,” Computer Methods in Applied Mechanics and Engineering, 193 (2004) 1909–1922, 10.1016/j.cma.2003.12.050
 [97]
 T.E. Tezduyar, and S. Sathe, “Enhancedapproximation linear solution technique (EALST),” Computer Methods in Applied Mechanics and Engineering, 193 (2004) 2033–2049, 10.1016/j.cma.2003.12.045
 [96]
 K. Stein, T.E. Tezduyar, and R. Benney, “Automatic mesh update with the solidextension mesh moving technique,” Computer Methods in Applied Mechanics and Engineering, 193 (2004) 2019–2032, 10.1016/j.cma.2003.12.046
 [95]
 T.E. Tezduyar, and S. Sathe, “Enhanceddiscretization spacetime technique (EDSTT),” Computer Methods in Applied Mechanics and Engineering, 193 (2004) 1385–1401, 10.1016/j.cma.2003.12.029
 [94]
 K. Stein, T. Tezduyar, and R. Benney, “Computational methods for modeling parachute systems,” Computing in Science and Engineering, 5 (2003) 39–46, 10.1109/MCISE.2003.1166551
 [93]
 T.E. Tezduyar, “Computation of moving boundaries and interfaces and stabilization parameters,” International Journal for Numerical Methods in Fluids, 43 (2003) 555–575, 10.1002/fld.505
 [92]
 J.E. Akin, T. Tezduyar, M. Ungor, and S. Mittal, “Stabilization parameters and Smagorinsky turbulence model,” Journal of Applied Mechanics, 70 (2003) 2–9, 10.1115/1.1526569
 [91]
 K. Stein, T. Tezduyar, and R. Benney, “Mesh moving techniques for fluid–structure interactions with large displacements,” Journal of Applied Mechanics, 70 (2003) 58–63, 10.1115/1.1530635
 [90]
 K. Stein, T. Tezduyar, V. Kumar, S. Sathe, R. Benney, E. Thornburg, C. Kyle, and T. Nonoshita, “Aerodynamic interactions between parachute canopies,” Journal of Applied Mechanics, 70 (2003) 50–57, 10.1115/1.1530634
 [89]
 M. Cruchaga, D. Celentano, and T. Tezduyar, “Computation of mould filling processes with a moving lagrangian interface technique,” Communications in Numerical Methods in Engineering, 18 (2002) 483–493, 10.1002/cnm.506
 [88]
 H. Johari, K. Stein, and T. Tezduyar, “Impulsively started flow about a rigid parachute canopy,” Journal of Aircraft, 38 (2001) 1102–1109, 10.2514/2.2878
 [87]
 K.R. Stein, R.J. Benney, T.E. Tezduyar, J.W. Leonard, and M.L. Accorsi, “Fluid–structure interactions of a round parachute: modeling and simulation techniques,” Journal of Aircraft, 38 (2001) 800–808, 10.2514/2.2864
 [86]
 T.E. Tezduyar, “Finite element methods for flow problems with moving boundaries and interfaces,” Archives of Computational Methods in Engineering, 8 (2001) 83–130, 10.1007/BF02897870
 [85]
 T. Tezduyar, and Y. Osawa, “Fluid–structure interactions of a parachute crossing the far wake of an aircraft,” Computer Methods in Applied Mechanics and Engineering, 191 (2001) 717–726, 10.1016/S00457825(01)003115
 [84]
 T. Tezduyar, and Y. Osawa, “The MultiDomain Method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft,” Computer Methods in Applied Mechanics and Engineering, 191 (2001) 705–716, 10.1016/S00457825(01)003103
 [83]
 K. Stein, R. Benney, T. Tezduyar, and J. Potvin, “Fluid–structure interactions of a cross parachute: numerical simulation,” Computer Methods in Applied Mechanics and Engineering, 191 (2001) 673–687, 10.1016/S00457825(01)003127
 [82]
 M. Cruchaga, D. Celentano, and T. Tezduyar, “A moving Lagrangian interface technique for flow computations over fixed meshes,” Computer Methods in Applied Mechanics and Engineering, 191 (2001) 525–543, 10.1016/S00457825(01)003000
 [81]
 S.E. Ray, and T.E. Tezduyar, “Fluid–object interactions in interior ballistics,” Computer Methods in Applied Mechanics and Engineering, 190 (2000) 363–372, 10.1016/S00457825(00)002073
 [80]
 V. Kalro, and T.E. Tezduyar, “A parallel 3D computational method for fluid–structure interactions in parachute systems,” Computer Methods in Applied Mechanics and Engineering, 190 (2000) 321–332, 10.1016/S00457825(00)002048
 [79]
 T.E. Tezduyar, and Y. Osawa, “Finite element stabilization parameters computed from element matrices and vectors,” Computer Methods in Applied Mechanics and Engineering, 190 (2000) 411–430, 10.1016/S00457825(00)002115
 [77]
 A. Johnson, and T. Tezduyar, “Methods for 3D computation of fluidobject interactions in spatiallyperiodic flows,” Computer Methods in Applied Mechanics and Engineering, 190 (2001) 3201–3221, 10.1016/S00457825(00)003893
 [76]
 M. Behr, and T. Tezduyar, “Shearslip mesh update in 3D computation of complex flow problems with rotating mechanical components,” Computer Methods in Applied Mechanics and Engineering, 190 (2001) 3189–3200, 10.1016/S00457825(00)003881
 [75]
 T.E. Tezduyar, “CFD methods for threedimensional computation of complex flow problems,” Journal of Wind Engineering and Industrial Aerodynamics, 81 (1999) 97–116, 10.1016/S01676105(99)000112
 [74]
 T.E. Tezduyar, and S. Aliabadi, “EDICT for 3D computation of twofluid interfaces,” Computer Methods in Applied Mechanics and Engineering, 190 (2000) 403–410, 10.1016/S00457825(00)002103
 [73]
 K. Kashiyama, Y. Ohba, T. Takagi, M. Behr, and T. Tezduyar, “Parallel finite element method utilizing the mode splitting and sigma coordinate for shallow water flows,” Computational Mechanics, 23 (1999) 144–150, 10.1007/s004660050394
 [72]
 S. Aliabadi, and T.E. Tezduyar, “StabilizedFiniteElement/InterfaceCapturing Technique for parallel computation of unsteady flows with interfaces,” Computer Methods in Applied Mechanics and Engineering, 190 (2000) 243–261, 10.1016/S00457825(00)002000
 [71]
 K. Stein, R. Benney, V. Kalro, T.E. Tezduyar, J. Leonard, and M. Accorsi, “Parachute fluid–structure interactions: 3D Computation,” Computer Methods in Applied Mechanics and Engineering, 190 (2000) 373–386, 10.1016/S00457825(00)002085
 [70]
 Y. Osawa, V. Kalro, and T. Tezduyar, “Multidomain parallel computation of wake flows,” Computer Methods in Applied Mechanics and Engineering, 174 (1999) 371–391, 10.1016/S00457825(98)003053
 [69]
 A.A. Johnson, and T.E. Tezduyar, “Advanced mesh generation and update methods for 3D flow simulations,” Computational Mechanics, 23 (1999) 130–143, 10.1007/s004660050393
 [68]
 M. Behr, and T. Tezduyar, “The ShearSlip Mesh Update Method,” Computer Methods in Applied Mechanics and Engineering, 174 (1999) 261–274, 10.1016/S00457825(98)002990
 [67]
 S. Mittal, S. Aliabadi, and T. Tezduyar, “Parallel computation of unsteady compressible flows with the EDICT,” Computational Mechanics, 23 (1999) 151–157, 10.1007/s004660050395
 [66]
 I. Guler, M. Behr, and T. Tezduyar, “Parallel finite element computation of freesurface flows,” Computational Mechanics, 23 (1999) 117–123, 10.1007/s004660050391
 [65]
 S. Mittal, and T. Tezduyar, “A unified finite element formulation for compressible and incompressible flows using augumented conservation variables.,” Computer Methods in Applied Mechanics and Engineering, 161 (1998) 229–243, 10.1016/S00457825(97)003186
 [64]
 T. Tezduyar, S. Aliabadi, and M. Behr, “EnhancedDiscretization InterfaceCapturing Technique (EDICT) for computation of unsteady flows with interfaces,” Computer Methods in Applied Mechanics and Engineering, 155 (1998) 235–248, 10.1016/S00457825(97)001941
 [63]
 N. Nigro, M. Storti, S. Idelsohn, and T. Tezduyar, “Physics based GMRES preconditioner for compressible and incompressible Navier–Stokes equations,” Computer Methods in Applied Mechanics and Engineering, 154 (1998) 203–228, 10.1016/S00457825(97)001291
 [62]
 V. Kalro, and T. Tezduyar, “3D computation of unsteady flow past a sphere with a parallel finite element method,” Computer Methods in Applied Mechanics and Engineering, 151 (1998) 267–276, 10.1016/S00457825(97)001205
 [61]
 S.E. Ray, G.P. Wren, and T.E. Tezduyar, “Parallel implementations of a finite element formulation for fluid–structure interactions in interior flows,” Parallel Computing, 23 (1997) 1279–1292, 10.1016/S01678191(97)000537
 [60]
 T. Tezduyar, V. Kalro, and W. Garrard, “Parallel computational methods for 3D simulation of a parafoil with prescribed shape changes,” Parallel Computing, 23 (1997) 1349–1363, 10.1016/S01678191(97)000574
 [59]
 V. Kalro, and T. Tezduyar, “Parallel 3D computation of unsteady flows around circular cylinders,” Parallel Computing, 23 (1997) 1235–1248, 10.1016/S01678191(97)000501
 [57]
 A.A. Johnson, and T.E. Tezduyar, “3D simulation of fluidparticle interactions with the number of particles reaching 100,” Computer Methods in Applied Mechanics and Engineering, 145 (1997) 301–321, 10.1016/S00457825(96)012236
 [56]
 T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V. Kalro, and M. Litke, “Flow simulation and high performance computing,” Computational Mechanics, 18 (1996) 397–412, 10.1007/BF00350249
 [51]
 A.A. Johnson, and T.E. Tezduyar, “Simulation of multiple spheres falling in a liquidfilled tube,” Computer Methods in Applied Mechanics and Engineering, 134 (1996) 351–373, 10.1016/00457825(95)009884
 [50]
 M. Behr, D. Hastreiter, S. Mittal, and T.E. Tezduyar, “Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries,” Computer Methods in Applied Mechanics and Engineering, 123 (1995) 309–316, 10.1016/00457825(94)007367
 [49]
 K. Kashiyama, H. Ito, M. Behr, and T. Tezduyar, “Threestep explicit finite element computation of shallow water flows on a massively parallel computer,” International Journal for Numerical Methods in Fluids, 21 (1995) 885–900, 10.1002/fld.1650211009
 [48]
 S.K. Aliabadi, and T.E. Tezduyar, “Parallel fluid dynamics computations in aerospace applications,” International Journal for Numerical Methods in Fluids, 21 (1995) 783–805, 10.1002/fld.1650211003
 [47]
 S. Mittal, and T.E. Tezduyar, “Parallel finite element simulation of 3D incompressible flows – Fluidstructure interactions,” International Journal for Numerical Methods in Fluids, 21 (1995) 933–953, 10.1002/fld.1650211011
 [46]
 G.P. Wren, S.E. Ray, S.K. Aliabadi, and T.E. Tezduyar, “Space–time finite element computation of compressible flows between moving components,” International Journal for Numerical Methods in Fluids, 21 (1995) 981–991, 10.1002/fld.1650211015
 [45]
 A.A. Johnson, and T.E. Tezduyar, “Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces,” Computer Methods in Applied Mechanics and Engineering, 119 (1994) 73–94, 10.1016/00457825(94)000778
 [44]
 J.G. Kennedy, M. Behr, V. Kalro, and T.E. Tezduyar, “Implementation of implicit finite element methods for incompressible flows on the CM5,” Computer Methods in Applied Mechanics and Engineering, 119 (1994) 95–111, 10.1016/00457825(94)000786
 [43]
 T.E. Tezduyar, S.K. Aliabadi, M. Behr, and S. Mittal, “Massively parallel finite element simulation of compressible and incompressible flows,” Computer Methods in Applied Mechanics and Engineering, 119 (1994) 157–177, 10.1016/00457825(94)000824
 [42]
 T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal, “Parallel finiteelement computation of 3D flows,” Computer, 26 (1993) 27–36, 10.1109/2.237441
 [41]
 S. Mittal, and T.E. Tezduyar, “Massively parallel finite element computation of incompressible flows involving fluidbody interactions,” Computer Methods in Applied Mechanics and Engineering, 112 (1994) 253–282, 10.1016/00457825(94)900299
 [40]
 M. Behr, and T.E. Tezduyar, “Finite element solution strategies for largescale flow simulations,” Computer Methods in Applied Mechanics and Engineering, 112 (1994) 3–24, 10.1016/00457825(94)900167
 [39]
 M. Behr, A. Johnson, J. Kennedy, S. Mittal, and T. Tezduyar, “Computation of incompressible flows with implicit finite element implementations on the Connection Machine,” Computer Methods in Applied Mechanics and Engineering, 108 (1993) 99–118, 10.1016/00457825(93)90155Q
 [38]
 S.K. Aliabadi, and T.E. Tezduyar, “Space–time finite element computation of compressible flows involving moving boundaries and interfaces,” Computer Methods in Applied Mechanics and Engineering, 107 (1993) 209–223, 10.1016/00457825(93)90176X
 [37]
 G.J.Le Beau, S.E. Ray, S.K. Aliabadi, and T.E. Tezduyar, “SUPG finite element computation of compressible flows with the entropy and conservation variables formulations,” Computer Methods in Applied Mechanics and Engineering, 104 (1993) 397–422, 10.1016/00457825(93)90033T
 [36]
 M.A. Behr, L.P. Franca, and T.E. Tezduyar, “Stabilized finite element methods for the velocitypressurestress formulation of incompressible flows,” Computer Methods in Applied Mechanics and Engineering, 104 (1993) 31–48, 10.1016/00457825(93)90205C
 [35]
 S. Mittal, and T.E. Tezduyar, “Notes on the stabilized space–time finite element formulation of unsteady incompressible flows,” Computer Physics Communications, 73 (1992) 93–112, 10.1016/00104655(92)90031S
 [34]
 S. Mittal, and T.E. Tezduyar, “A finite element study of incompressible flows past oscillating cylinders and aerofoils,” International Journal for Numerical Methods in Fluids, 15 (1992) 1073–1118, 10.1002/fld.1650150911
 [33]
 O. Pironneau, J. Liou, and T. Tezduyar, “CharacteristicGalerkin and Galerkin/Leastsquares Space–Time Formulations for the Advection–Diffusion Equation with Timedependent Domains,” Computer Methods in Applied Mechanics and Engineering, 100 (1992) 117–141, 10.1016/00457825(92)901162
 [32]
 T.E. Tezduyar, M. Behr, S.K. Aliabadi, S. Mittal, and S.E. Ray, “A new mixed preconditioning method for finite element computations,” Computer Methods in Applied Mechanics and Engineering, 99 (1992) 27–42, 10.1016/00457825(92)90121Y
 [31]
 T.E. Tezduyar, “Stabilized finite element formulations for incompressible flow computations,” Advances in Applied Mechanics, 28 (1992) 1–44, 10.1016/S00652156(08)701534
 [30]
 T.E. Tezduyar, M. Behr, S. Mittal, and J. Liou, “A new strategy for finite element computations involving moving boundaries and interfaces – the deformingspatialdomain/space–time procedure: II. Computation of freesurface flows, twoliquid flows, and flows with drifting cylinders,” Computer Methods in Applied Mechanics and Engineering, 94 (1992) 353–371, 10.1016/00457825(92)90060W
 [29]
 T.E. Tezduyar, M. Behr, and J. Liou, “A new strategy for finite element computations involving moving boundaries and interfaces – the deformingspatialdomain/space–time procedure: I. The concept and the preliminary numerical tests,” Computer Methods in Applied Mechanics and Engineering, 94 (1992) 339–351, 10.1016/00457825(92)90059S
 [28]
 T.E. Tezduyar, S. Mittal, S.E. Ray, and R. Shih, “Incompressible flow computations with stabilized bilinear and linear equalorderinterpolation velocitypressure elements,” Computer Methods in Applied Mechanics and Engineering, 95 (1992) 221–242, 10.1016/00457825(92)901416
 [25]
 M. Behr, J. Liou, R. Shih, and T.E. Tezduyar, “Vorticitystream function formulation of unsteady incompressible flow past a cylinder: sensitivity of the computed flow field to the location of the outflow boundary,” International Journal for Numerical Methods in Fluids, 12 (1991) 323–342, 10.1002/fld.1650120403
 [24]
 T.E. Tezduyar, S. Mittal, and R. Shih, “Timeaccurate incompressible flow computations with quadrilateral velocitypressure elements,” Computer Methods in Applied Mechanics and Engineering, 87 (1991) 363–384, 10.1016/00457825(91)90014W
 [21]
 T.E. Tezduyar, and J. Liou, “On the downstream boundary condition for the vorticitystream function formulation of twodimensional incompressible flows,” Computer Methods in Applied Mechanics and Engineering, 85 (1991) 207–217, 10.1016/00457825(91)90133Q
 [20]
 J. Liou, and T.E. Tezduyar, “Iterative adaptive implicitexplicit methods for flow problems,” International Journal for Numerical Methods in Fluids, 11 (1990) 867–880, 10.1002/fld.1650110611
 [19]
 Y.J. Park, H.A. Deans, and T.E. Tezduyar, “Finite element formulation for transport equations in a mixed coordinate system: an application to determine temperature effects on the singlewell chemical tracer test,” International Journal for Numerical Methods in Fluids, 11 (1990) 769–790, 10.1002/fld.1650110605
 [18]
 T.E. Tezduyar, and J. Liou, “Computation of spatially periodic flows based on the vorticitystream function formulation,” Computer Methods in Applied Mechanics and Engineering, 83 (1990) 121–142, 10.1016/00457825(90)90147E
 [17]
 T.E. Tezduyar, J. Liou, and D.K. Ganjoo, “Incompressible flow computations based on the vorticitystream function and velocitypressure formulations,” Computers & Structures, 35 (1990) 445–472, 10.1016/00457949(90)90069E
 [16]
 T.E. Tezduyar, and J. Liou, “Adaptive implicitexplicit finite element algorithms for fluid mechanics problems,” Computer Methods in Applied Mechanics and Engineering, 78 (1990) 165–179, 10.1016/00457825(90)900998
 [15]
 T.E. Tezduyar, J. Liou, D.K. Ganjoo, and M. Behr, “Solution techniques for the vorticitystream function formulation of twodimensional incompressible flows,” International Journal for Numerical Methods in Fluids, 11 (1990) 515–539, 10.1002/fld.1650110505
 [14]
 T.E. Tezduyar, “Finite element formulation for the vorticitystream function form of the incompressible Euler equations on multiplyconnected domains,” Computer Methods in Applied Mechanics and Engineering, 73 (1989) 331–339, 10.1016/00457825(89)900728
 [13]
 T.E. Tezduyar, and J. Liou, “Grouped elementbyelement iteration schemes for incompressible flow computations,” Computer Physcis Communications, 53 (1989) 441–453, 10.1016/00104655(89)90177X
 [12]
 D.K. Ganjoo, T.E. Tezduyar, and W.D. Goodrich, “A new formulation for numerical solution of electrophoresis separation processes,” Computer Methods in Applied Mechanics and Engineering, 75 (1989) 515–530, 10.1016/00457825(89)900455
 [11]
 T.E. Tezduyar, R. Glowinski, and J. Liou, “PetrovGalerkin methods on multiplyconnected domains for the vorticitystream function formulation of the incompressible NavierStokes equations,” International Journal for Numerical Methods in Fluids, 8 (1988) 1269–1290, 10.1002/fld.1650081012
 [10]
 D.K. Ganjoo, and T.E. Tezduyar, “PetrovGalerkin formulations for electrochemical processes,” Computer Methods in Applied Mechanics and Engineering, 65 (1987) 61–83, 10.1016/00457825(87)901836
 [ 9]
 T.E. Tezduyar, Y.J. Park, and H.A. Deans, “Finite element procedures for timedependent convectiondiffusionreaction systems,” International Journal for Numerical Methods in Fluids, 7 (1987) 1013–1033, 10.1002/fld.1650071003
 [ 8]
 T.E. Tezduyar, and Y.J. Park, “Discontinuity capturing finite element formulations for nonlinear convectiondiffusionreaction equations,” Computer Methods in Applied Mechanics and Engineering, 59 (1986) 307–325, 10.1016/00457825(86)900034
 [ 7]
 T.E. Tezduyar, L.T. Wheeler, and L. Graux, “Finite deformation of a circular elastic membrane containing a concentric rigid inclusion,” International Journal of Nonlinear Mechanics, 22 (1987) 61–72, 10.1016/00207462(87)900497
 [ 6]
 T.E. Tezduyar, and D.K. Ganjoo, “PetrovGalerkin formulations with weighting functions dependent upon spatial and temporal discretization: applications to transient convectiondiffusion problems,” Computer Methods in Applied Mechanics and Engineering, 59 (1986) 49–71, 10.1016/00457825(86)90023X
 [ 5]
 L.T. Wheeler, T.E. Tezduyar, and B.H. Eldiwany, “Profiles of minimum stress concentration for antiplane deformation of an elastic solid,” Journal of Elasticity, 15 (1985) 271–282, 10.1007/BF00041425
 [ 4]
 T.J.R. Hughes, and T.E. Tezduyar, “Analysis of Some Fullydiscrete Algorithms for the Onedimensional Heat Equation,” International Journal of Numerical Methods in Engineering, 21 (1985) 163–168, 10.1002/nme.1620210113
 [ 3]
 T.J.R. Hughes, and T.E. Tezduyar, “Finite element methods for firstorder hyperbolic systems with particular emphasis on the compressible Euler equations,” Computer Methods in Applied Mechanics and Engineering, 45 (1984) 217–284, 10.1016/00457825(84)901579
 [ 2]
 T.J.R. Hughes, and T.E. Tezduyar, “Stability and Accuracy Analysis of Some Fullydiscrete Algorithms for the Onedimensional Secondorder Wave Equation,” Computers & Fluids, 19 (1984) 665–668, 10.1016/00457949(84)901135
 [ 1]
 T.J.R. Hughes, and T.E. Tezduyar, “Finite Elements Based Upon Mindlin Plate Theory with Particular Reference to the Fournode Bilinear Isoparametric Element,” Journal of Applied Mechanics, 48 (1981) 587–596 also in New Concepts in Finite Element Analysis, AMDVol. 44, ASME, New York (1981) 81106, 10.1115/1.3157679
 [20]
 K. Takizawa, and T.E. Tezduyar, “Main aspects of the space–time computational FSI techniques and examples of challenging problems solved,” Mechanical Engineering Reviews, 1 (2014) CM0005 inaugural issue, 10.1299/mer.2014cm0005
 [19]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Coupling 3D fluid–structure interaction modeling of cerebral aneurysm with 0D arterial network model as boundary conditions,” Transactions of the Japan Society for Simulation Technology, 1 (2009) 81–90
 [18]
 R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Influence of wall elasticity on imagebased blood flow simulation,” Japan Society of Mechanical Engineers Journal Series A, 70 (2004) 1224–1231 in Japanese
 [17]
 L. Catabriga, A.L.G.A. Coutinho, and T.E. Tezduyar, “Compressible flow SUPG stabilization parameters computed from elementedge matrices,” Computational Fluid Dynamics Journal, 13 (2004) 450–459
 [16]
 T.E. Tezduyar, “Stabilized finite element methods for flows with moving boundaries and interfaces,” HERMIS: The International Journal of Computer Mathematics and its Applications, 4 (2003) 63–88
 [15]
 K. Stein, T. Tezduyar, R. Benney, M. Accorsi, and H. Johari, “Computational modeling of parachute fluidstructure interactions,” Computational Fluid Dynamics Journal, 12 (2003) 516–526
 [14]
 T.E. Tezduyar, “Calculation of the stabilization parameters in finite element formulations of flow problems,” Applications of Computational Mechanics in Structures and Fluids (2005) 1–19
 [13]
 T. Tezduyar, and S. Sathe, “Stabilization parameters in SUPG and PSPG formulations,” Journal of Computational and Applied Mechanics, 4 (2003) 71–88
 [12]
 A.M.K. Anderson, and T.E. Tezduyar, “A KPHD education program in flow simulation and modeling,” Computational Fluid Dynamics Journal, 9 (2000) 242–251
 [11]
 W.B. Sturek, T.E. Tezduyar, and P. Muzio, “Army High Performance Computing Research Center: a unique resource for defense basic research and education,” Army RD& A, September–October (1999) 44–45
 [10]
 Y. Osawa, and T. Tezduyar, “3D simulation and visualization of unsteady wake flow behind a cylinder,” Journal of Visualization, 2 (1999) 127–134, 10.1007/BF03181515
 [ 9]
 Y. Osawa, and T. Tezduyar, “A multidomain method for 3D computation of wake flow behind a circular cylinder,” Computational Fluid Dynamics Journal, 8 (1999) 296–308
 [ 8]
 V. Kalro, and T. Tezduyar, “Parallel iterative computational methods for 3D finite element flow simulations,” Computer Assisted Mechanics and Engineering Sciences, 5 (1998) 173–183
 [ 7]
 J. Chandra, and T. Tezduyar, “High performance computing: an Army initiative,” Army RD& A, May–June (1995) 28–31
 [ 6]
 T.E. Tezduyar, “Site report: the Army High Performance Computing Research Center,” IEEE Computational Science & Engineering, Summer (1994) 6–8
 [ 5]
 A.A. Johnson, T.E. Tezduyar, and J. Liou, “Numerical simulation of flows past periodic arrays of cylinders,” Computational Mechanics, 11 (1993) 371–383, 10.1007/BF00350094
 [ 4]
 S.K. Aliabadi, S.E. Ray, and T.E. Tezduyar, “SUPG finite element computation of compressible flows with the entropy and conservation variables formulations,” Computational Mechanics, 11 (1993) 300–312, 10.1007/BF00350089
 [ 3]
 S. Mittal, A. Ratner, D. Hastreiter, and T.E. Tezduyar, “Space–time finite element computation of incompressible flows with emphasis on flows involving oscillating cylinders,” International Video Journal of Engineering Research, 1 (1991) 83–96
 [ 2]
 Y.J. Park, H.A. Deans, and T.E. Tezduyar, “Thermal effects on singlewell chemical tracer tests for measuring residual oil saturation,” Society of Petroleum Engineers Formation Evaluation, 190 (1991) 401–408, 10.2118/19683PA
 [ 1]
 M. Behr, T.E. Tezduyar, and H. Higuchi, “Wake interference behind two flat plates normal to the flow: A finiteelement study,” Theoretical and Computational Fluid Mechanics, 2 (1991) 223–250, 10.1007/BF00271639
