Interface-Tracking and Interface-Capturing Techniques for Computation of Moving Boundaries and Interfaces

Tayfun Tezduyar
Mechanical Engineering, Rice University – MS 321
6100 Main Street, Houston, Texas 77005, USA
e-mail: tezduyar@rice.edu

Key words: interface-tracking, interface-capturing, enhanced discretization

Abstract
We provide an overview of the interface-tracking and interface-capturing techniques we have developed in recent years for computation of flow problems with moving boundaries and interfaces. The interface-tracking techniques are based on the Deforming-Spatial-Domain/Stabilized Space-Time formulation, where the mesh moves to track the interface. The interface-capturing techniques were developed for two-fluid flows. They are based on the stabilized formulation, over typically non-moving meshes, of both the flow equations and an advection equation. The advection equation governs the time-evolution of an interface function marking the interface location. We also provide an overview of some of the additional methods developed to increase the scope and accuracy of these two classes of techniques. Among them are the Enhanced-Discretization Interface-Capturing Technique (EDICT), which was developed to increase the accuracy in capturing the interface, and extensions and offshoots of the EDICT.
1 Introduction

In computation of flow problems with moving boundaries and interfaces, depending on the complexity of the interface and other aspects of the problem, we can use an interface-tracking or interface-capturing technique. An interface-tracking technique requires meshes that “track” the interfaces. The mesh needs to be updated as the flow evolves. In an interface-capturing technique for two-fluid flows, the computations are based on fixed spatial domains, where an interface function, marking the location of the interface, needs to be computed to “capture” the interface. The interface is captured within the resolution of the finite element mesh covering the area where the interface is. This approach can be seen as a special case of interface representation techniques, where the interface is somehow represented over a non-moving fluid mesh, the main point being that the fluid mesh does not move to track the interfaces. A consequence of the mesh not moving to track the interface is that for fluid-solid interfaces, independent of how well the interface geometry is represented, the resolution of the boundary layer will be limited by the resolution of the fluid mesh where the interface is.

The interface-tracking and interface-capturing techniques we have developed in recent years (see [1, 2, 3, 4]) are based on stabilized formulations. The stabilized methods are the streamline-upwind/Petrov-Galerkin (SUPG) [5], Galerkin/least-squares (GLS) [6], and pressure-stabilizing/Petrov-Galerkin (PSPG) [1] formulations. They prevent numerical oscillations and other instabilities in solving problems with high Reynolds and/or Mach numbers and shocks and strong boundary layers, as well as when using equal-order interpolation functions for velocity and pressure and other unknowns. Furthermore, this class of stabilized formulations substantially improve the convergence rate in iterative solution of the large, coupled nonlinear equation system that needs to be solved at every time step of a flow computation. Such nonlinear systems are typically solved with the Newton-Raphson method, which involves, at its every iteration step, solution of a large, coupled linear equation system. It is in iterative solution of such linear equation systems that using a good stabilized method makes substantial difference in convergence, and this was pointed out in [7].

The Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation [1], developed for moving boundaries and interfaces, is an interface-tracking technique, where the finite element formulation of the problem is written over its space-time domain. At each time step the locations of the interfaces are calculated as part of the overall solution. As the spatial domain occupied by the fluid changes its shape in time, mesh needs to be updated. In general, this is accomplished by moving the mesh with the motion of the nodes governed by the equations of elasticity, and full or partial remeshing (i.e., generating a new set of elements, and sometimes also a new set of nodes) as needed.

In computation of two fluid-flows (we mean this category to include free-surface flows) with interface-tracking techniques, sometimes the interface might be too complex or unsteady to track while keeping the frequency of remeshing at an acceptable level. Not being able to reduce the frequency of remeshing in 3D might introduce overwhelming mesh generation and projection costs, making the computations with the interface-tracking technique no longer feasible. In such cases, interface-capturing techniques, which do not normally require costly mesh update steps, could be used with the understanding that the interface will not be represented as accurately as we would have with an interface-tracking technique. Because they do not require mesh update, the interface-capturing techniques are more flexible than the interface-tracking techniques. However, for comparable levels of spatial discretization, interface-capturing methods yield less accurate representation of the interface. These methods can be used as practical alternatives in carrying out the simulations when compromising the accurate representation of the interfaces becomes less of a concern than facing major difficulties in updating the mesh to track such interfaces. The desire
to increase the accuracy of our interface-capturing techniques without adding a major computational cost lead us to seeking techniques with a different kind of “tracking”. The Enhanced-Discretization Interface-Capturing Technique (EDICT) was first introduced in [8] to increase accuracy in representing an interface. We will describe the EDICT more in a later section. In later sections, we will also describe some of the additional ideas and methods developed to increase the scope and accuracy of the interface-tracking and interface-capturing techniques.

2 Governing Equations

Let $\Omega_t \subset \mathbb{R}^{n+1}$ be the spatial fluid mechanics domain with boundary Γ_t at time $t \in (0, T)$, where the subscript t indicates the time-dependence of the spatial domain. The Navier-Stokes equations of incompressible flows can be written on Ω_t and $\forall t \in (0, T)$ as

$$\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u - f \right) - \nabla \cdot \sigma = 0,$$

$$\nabla \cdot u = 0,$$ \hspace{1cm} (1)

where ρ, u and f are the density, velocity and the external force, respectively. The stress tensor σ is defined as

$$\sigma(p, u) = -pI + 2\mu \varepsilon(u).$$ \hspace{1cm} (2)

Here p is the pressure, I is the identity tensor, $\mu = \rho \nu$ is the viscosity, ν is the kinematic viscosity, and $\varepsilon(u)$ is the strain-rate tensor:

$$\varepsilon(u) = \frac{1}{2}((\nabla u) + (\nabla u)^T).$$ \hspace{1cm} (3)

The essential and natural boundary conditions for Eq. (1) are represented as

$$u = g \text{ on } (\Gamma_t)_g, \quad n \cdot \sigma = h \text{ on } (\Gamma_t)_h,$$ \hspace{1cm} (4)

where $(\Gamma_t)_g$ and $(\Gamma_t)_h$ are complementary subsets of the boundary Γ_t, n is the unit normal vector, and g and h are given functions. A divergence-free velocity field $u_{0}(x)$ is specified as the initial condition.

If the problem does not involve any moving boundaries or interfaces, the spatial domain does not need to change with respect to time, and the subscript t can be dropped from Ω_t and $\forall t \in (0, T)$. This might be the case even for flows with moving boundaries and interfaces, if in the formulation used the spatial domain is not defined to be the part of the space occupied by the fluid(s). For example, we can have a fixed spatial domain, and model the fluid-fluid interfaces by assuming that the domain is occupied by two immiscible fluids, A and B, with densities ρ_A and ρ_B and viscosities μ_A and μ_B. In modeling a free-surface problem where Fluid B is irrelevant, we assign a sufficiently low density to Fluid B. An interface function ϕ serves as a marker identifying Fluid A and B with the definition $\phi = \{1 \text{ for Fluid A and } 0 \text{ for Fluid B}\}$. The interface between the two fluids is approximated to be at $\phi = 0.5$. In this context, ρ and μ are defined as

$$\rho = \phi \rho_A + (1 - \phi) \rho_B, \quad \mu = \phi \mu_A + (1 - \phi) \mu_B.$$ \hspace{1cm} (5)

The evolution of the interface function ϕ, and therefore the motion of the interface, is governed by a time-dependent advection equation, written on Ω and $\forall t \in (0, T)$ as

$$\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi = 0.$$ \hspace{1cm} (6)
3 Stabilized Formulations

3.1 Advection-Diffusion Equation

Let us consider over a domain Ω with boundary Γ the following time-dependent advection-diffusion equation, written on Ω and $\forall t \in (0, T)$ as

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi - \nabla \cdot (\nu \nabla \phi) = 0,$$

where ϕ represents the quantity being transported (e.g., temperature, concentration, interface function), and ν is the diffusivity. The essential and natural boundary conditions associated with Eq. (8) are represented as

$$\phi = g \text{ on } \Gamma_g, \quad \mathbf{n} \cdot \nabla \phi = h \text{ on } \Gamma_h,$$

A function $\phi_0(x)$ is specified as the initial condition.

Let us assume that we have constructed some suitably-defined finite-dimensional trial solution and test function spaces S_u^h and V_p^h. The stabilized finite element formulation of Eq. (8) can then be written as follows: find $\phi^h \in S_u^h$ such that $\forall w^h \in V_p^h$,

$$\int_{\Omega_e} w^h \left(\frac{\partial \phi^h}{\partial t} + \mathbf{u}^h \cdot \nabla \phi^h \right) d\Omega + \int_{\Omega_e} \nabla w^h \cdot \nabla \phi^h d\Omega - \int_{\Gamma_h} w^h h^h d\Gamma$$

$$+ \sum_{e=1}^{n_{el}} \int_{\Omega_e} \tau_{SUPG} \mathbf{u}^h \cdot \nabla w^h \left(\frac{\partial \phi^h}{\partial t} + \mathbf{u}^h \cdot \nabla \phi^h - \nabla \cdot (\nu \nabla \phi^h) \right) d\Omega = 0.$$ (10)

Here n_{el} is the number of elements, Ω_e is the domain for element e, and τ_{SUPG} is the SUPG stabilization parameter. For various different ways of calculating τ_{SUPG}, see [9, 10, 4, 11].

3.2 Navier-Stokes Equations of Incompressible Flows

Given Eqs. (1)-(2), let us assume that we have some suitably-defined finite-dimensional trial solution and test function spaces for velocity and pressure; S_u^h, V_u^h, S_p^h and $V_p = S_p^h$. The stabilized finite element formulation of Eqs. (1)-(2) can then be written as follows: find $u^h \in S_u^h$ and $p^h \in S_p^h$ such that $\forall w^h \in V_u^h$ and $q^h \in V_p^h$,

$$\int_{\Omega} \mathbf{w}^h \cdot \rho \left(\frac{\partial \mathbf{u}^h}{\partial t} + \mathbf{u}^h \cdot \nabla \mathbf{u}^h - \mathbf{f} \right) d\Omega + \int_{\Omega} \mathbf{e}(\mathbf{w}^h) : \mathbf{\sigma}(p^h, u^h) d\Omega - \int_{\Gamma_h} \mathbf{w}^h \cdot \mathbf{h}^h d\Gamma$$

$$+ \int_{\Omega} q^h \nabla \cdot \mathbf{u}^h d\Omega + \sum_{e=1}^{n_{el}} \int_{\Omega_e} \frac{1}{\rho} \left[\tau_{SUPG} \rho \mathbf{u}^h \cdot \nabla \mathbf{w}^h + \tau_{PSPG} \nabla q^h \right] \cdot \rho \left(\frac{\partial \mathbf{u}^h}{\partial t} + \mathbf{u}^h \cdot \nabla \mathbf{u}^h - \nabla \cdot \mathbf{\sigma}(p^h, u^h) - \rho \mathbf{f} \right) d\Omega$$

$$+ \sum_{e=1}^{n_{el}} \int_{\Omega_e} \tau_{LSIC} \nabla \cdot \mathbf{w}^h \rho \nabla \cdot \mathbf{u}^h d\Omega = 0.$$ (11)

Here τ_{PSPG} and τ_{LSIC} are the PSPG and LSIC (least-squares on incompressibility constraint) stabilization parameters. For various different ways of calculating τ_{SUPG}, τ_{PSPG} and τ_{LSIC}, see [9, 10, 4, 11].
4 DSD/SST Finite Element Formulation

In the DSD/SST method, the finite element formulation of the governing equations is written over a sequence of N space-time slabs Q_n, where Q_n is the slice of the space-time domain between the time levels t_n and t_{n+1}. At each time step, the integrations involved in the finite element formulation are performed over Q_n. The space-time finite element interpolation functions are continuous within a space-time slab, but discontinuous from one space-time slab to another. The notation $(-)^{-}_n$ and $(-)^{+}_n$ denotes the function values at t_n as approached from below and above. Each Q_n is decomposed into space-time elements Q_{ne}^n, where $e = 1, 2, \ldots, (n_e)_n$. The subscript n used with n_e is to account for the general case in which the number of space-time elements may change from one space-time slab to another. The Dirichlet- and Neumann-type boundary conditions are enforced over $(P_n)_e$ and $(P_n)_{h}$, the complementary subsets of the lateral boundary of the space-time slab. The finite element trial function spaces $(\mathcal{V}_u^h)_n$ for velocity and $(S_p^h)_n$ for pressure, and the test function spaces $(\mathcal{V}_p^h)_n$ and $(S_p^h)_n$ are defined by using, over Q_n, first-order polynomials in both space and time. The DSD/SST formulation is written as follows: given $(u^h)^{-}_n$, find $u^h \in (S_u^h)_n$ and $p^h \in (S_p^h)_n$ such that $\forall w^h \in (\mathcal{V}_u^h)_n$ and $q^h \in (\mathcal{V}_p^h)_n$:

$$
\int_{Q_n} w^h \cdot \rho \left(\frac{\partial u^h}{\partial t} + u^h \cdot \nabla u^h - \mathbf{f}^h \right) dQ + \int_{Q_n} \varepsilon(w^h) : \mathbf{\sigma}(p^h, u^h) dQ \\
- \int_{(P_n)_{h}} w^h \cdot h^h dP + \int_{Q_n} q^h \nabla \cdot u^h dQ + \int_{\Omega_n} (w^h)^{+}_n \cdot \rho \left((u^h)^{+}_n - (u^h)^{-}_n \right) d\Omega \\
+ \sum_{e=1}^{(n_e)_n} \int_{Q_{ne}^n} \tau_{LSME} \mathbf{L}(q^h, w^h) \cdot \left[\mathbf{L}(p^h, u^h) - \rho \mathbf{f}^h \right] dQ \\
+ \sum_{e=1}^{n_e} \int_{Q_{ne}^n} \tau_{LSIC} \nabla \cdot w^h \rho \nabla \cdot u^h dQ = 0,
$$

where

$$
\mathbf{L}(q^h, w^h) = \rho \left(\frac{\partial w^h}{\partial t} + u^h \cdot \nabla w^h \right) - \nabla \cdot \mathbf{\sigma}(q^h, w^h),
$$

and τ_{LSME} and τ_{LSIC} are the stabilization parameters (see [12]). This formulation is applied to all space-time slabs Q_0, Q_1, Q_2, \ldots, Q_{N-1}, starting with $(u^h)_0^{-} = u_0$. For an earlier, detailed reference on this stabilized formulation see [1].

A DSD/SST formulation that is slightly different than the one given by Eq. (12) can be written by neglecting the $(\tau_{LSME}/\rho) \nabla \cdot (2\mu \varepsilon(w^h))$ term and replacing τ_{LSME} with τ_{SUPG} and τ_{PSPG}:

$$
\int_{Q_n} w^h \cdot \rho \left(\frac{\partial u^h}{\partial t} + u^h \cdot \nabla u^h - \mathbf{f}^h \right) dQ + \int_{Q_n} \varepsilon(w^h) : \mathbf{\sigma}(p^h, u^h) dQ \\
- \int_{(P_n)_{h}} w^h \cdot h^h dP + \int_{Q_n} q^h \nabla \cdot u^h dQ + \int_{\Omega_n} (w^h)^{+}_n \cdot \rho \left((u^h)^{+}_n - (u^h)^{-}_n \right) d\Omega \\
+ \sum_{e=1}^{(n_e)_n} \int_{Q_{ne}^n} \frac{1}{\rho} \left[\tau_{SUPG} \left(\frac{\partial w^h}{\partial t} + u^h \cdot \nabla w^h \right) + \tau_{PSPG} \nabla q^h \right] \cdot \left[\mathbf{L}(p^h, u^h) - \rho \mathbf{f}^h \right] dQ \\
+ \sum_{e=1}^{n_e} \int_{Q_{ne}^n} \tau_{LSIC} \nabla \cdot w^h \rho \nabla \cdot u^h dQ = 0.
$$

For ways of calculating τ_{SUPG}, τ_{PSPG} and τ_{LSIC}, see [13, 11].
5 Mesh Update Methods

How the mesh should be updated depends on several factors, such as the complexity of the interface and overall geometry, how unsteady the interface is, and how the starting mesh was generated. In general, the mesh update could have two components: moving the mesh for as long as it is possible, and full or partial remeshing (i.e., generating a new set of elements, and sometimes also a new set of nodes) when the element distortion becomes too high. In mesh moving strategies, the only rule the mesh motion needs to follow is that at the interface the normal velocity of the mesh has to match the normal velocity of the fluid. Beyond that, the mesh can be moved in any way desired, with the main objective being to reduce the frequency of remeshing. In 3D simulations, if the remeshing requires calling an automatic mesh generator, the cost of automatic mesh generation becomes a major incentive for trying to reduce the frequency of remeshing. Furthermore, when we remesh, we need to project the solution from the old mesh to the new one. This introduces projection errors. Also, in 3D, the computing time consumed by this projection step is not a trivial one. All these factors constitute a strong motivation for designing mesh update strategies which minimize the frequency of remeshing. In some cases where the changes in the shape of the computational domain allow it, a special-purpose mesh moving method can be used in conjunction with a special-purpose mesh generator. In such cases, simulations can be carried out without calling an automatic mesh generator and without solving any additional equations to determine the motion of the mesh. One of the earliest examples of that, 2D computation of sloshing in a laterally vibrating container, can be found in [1]. Extension of that concept to 3D parallel computation of sloshing in a vertically vibrating container can be found in [7].

In general, however, we use an automatic mesh moving scheme [14] to move the nodal points, as governed by the equations of linear elasticity. The motion of the internal nodes is determined by solving these additional equations, with the boundary conditions for these mesh motion equations specified in such a way that they match the normal velocity of the fluid at the interface. Similar mesh moving techniques were used earlier by other researchers (see for example [15]). In our mesh moving method based on linear elasticity, the structured layers of elements generated around solid objects (to fully control the mesh resolution near solid objects and have more accurate representation of the boundary layers) move “glued” to these solid objects, undergoing a rigid-body motion. No equations are solved for the motion of the nodes in these layers, because these nodal motions are not governed by the equations of elasticity. This results in some cost reduction. But more importantly, the user has full control of the mesh resolution in these layers. For early examples of automatic mesh moving combined with structured layers of elements undergoing rigid-body motion with solid objects, see [7]. Earlier examples of element layers undergoing rigid-body motion, in combination with deforming structured meshes, can be found in [1].

In computation of flows with fluid-solid interfaces where the solid is deforming, the motion of the fluid mesh near the interface cannot be represented by a rigid-body motion. Depending on the deformation mode of the solid, we may have to use the automatic mesh moving technique described above. In such cases, presence of very thin fluid elements near the solid surface creates a challenge for the automatic mesh moving technique. In the Solid-Extension Mesh Moving Technique (SEMMT), we propose to treat those thin fluid elements like an extension of the solid elements. In the SEMMT, in solving the equations of elasticity governing the motion of the fluid nodes, we assign a much higher rigidity to these thin elements, compared to the other fluid elements. This could be implemented in two ways; we can solve the elasticity equations for the nodes connected to the thin elements separate from the elasticity equations for the other nodes, or together. If we solve them separately, for the thin elements, as boundary conditions at the interface with the other elements, we would use traction-free boundary conditions.
6 Enhanced-Discretization Interface-Capturing Technique

In the EDICT, we start with the basic approach of an interface-capturing technique such as the volume of fluid (VOF) method [16]. The Navier-Stokes equations are solved over a non-moving mesh together with the time-dependent advection equation governing the evolution of the interface function ϕ. In writing the stabilized finite element formulation for the EDICT (see [17]), the notation we use here for representing the finite-dimensional function spaces is very similar to the notation we used in the section where we described the DSD/SST formulation. The trial function spaces corresponding to velocity, pressure and interface function are denoted, respectively, by $\left(S^h_u\right)_n$, $\left(S^h_p\right)_n$, and $\left(S^h_\phi\right)_n$. The weighting function spaces corresponding to the momentum equation, incompressibility constraint and time-dependent advection equation are denoted by $\left(V^h_u\right)_n$, $\left(V^h_p\right)_n$, $\left(V^h_\phi\right)_n$. The subscript n in this case allows us to use different spatial discretizations corresponding to different time levels.

The stabilized formulations of the flow and advection equations can be written as follows: given u^h_n and ϕ^h_n, find $u^h_{n+1} \in \left(S^h_u\right)_{n+1}$, $p^h_{n+1} \in \left(S^h_p\right)_{n+1}$, and $\phi^h_{n+1} \in \left(S^h_\phi\right)_{n+1}$, such that, $\forall w^h_{n+1} \in \left(V^h_u\right)_{n+1}$, $\forall q^h_{n+1} \in \left(V^h_p\right)_{n+1}$, and $\forall \psi^h_{n+1} \in \left(V^h_\phi\right)_{n+1}$:

$$\int_{\Omega^h} w^h_{n+1} \cdot \rho \left(\frac{\partial u^h}{\partial t} + u^h \cdot \nabla u^h - f^h \right) d\Omega + \int_{\Gamma^h} \varepsilon(w^h_{n+1}) : \sigma(p^h, u^h) d\Gamma = 0,$$

$$- \int_{\Omega^h} w^h_{n+1} \cdot h^h d\Omega + \int_{\Gamma^h} q^h_{n+1} \nabla \cdot u^h d\Gamma$$

$$+ \sum_{e=1}^{n_{el}} \int_{\Omega^e} \frac{1}{\rho} \left[\tau_{\text{SUPG}} \rho u^h \cdot \nabla w^h_{n+1} + \tau_{\text{PSPG}} \nabla q^h_{n+1} \right] \cdot \left[L(p^h, u^h) - \rho f^h \right] d\Omega$$

$$+ \sum_{e=1}^{n_{el}} \int_{\Omega^e} \tau_{\text{LSIC}} \nabla \cdot w^h_{n+1} \rho \nabla \cdot u^h d\Omega = 0, \quad (15)$$

$$\int_{\Omega} \psi^h_{n+1} \left(\frac{\partial \phi^h}{\partial t} + u^h \cdot \nabla \phi^h \right) d\Omega$$

$$+ \sum_{e=1}^{n_{el}} \int_{\Omega^e} \tau_{\phi} u^h \cdot \nabla \psi^h_{n+1} \left(\frac{\partial \phi^h}{\partial t} + u^h \cdot \nabla \phi^h \right) d\Omega = 0. \quad (16)$$

Here τ_{SUPG}, τ_{PSPG} and τ_{ϕ} are the stabilization parameters, and τ_{ϕ} is calculated by applying the definition of τ_{SUPG} to Eq. (16). For various different ways of calculating τ_{SUPG} and τ_{PSPG}, see [9, 10, 4, 11].

To increase the accuracy, we use function spaces corresponding to enhanced discretization at and near the interface. A subset of the elements in the base mesh, Mesh-1, are identified as those at and near the interface. A more refined mesh, Mesh-2, is constructed by patching together second-level meshes generated over each element in this subset. The interpolation functions for velocity and pressure will all have two components each: one coming from Mesh-1 and the second one coming from Mesh-2. To further increase the accuracy, we construct a third-level mesh, Mesh-3, for the interface function only. The construction of Mesh-3 from Mesh-2 is very similar to the construction of Mesh-2 from Mesh-1. The interpolation functions for the interface function will have three components, each coming from one of these three meshes. We re-define the subsets over which we build Mesh-2 and Mesh-3 not every time step but with sufficient frequency to keep the interface enveloped in. We need to avoid this envelope being too wide or too narrow.
7 Extensions and Offshoots of EDICT

An offshoot of EDICT was first reported in [18] for computation of compressible flows with shocks. This extension is based on re-defining the “interface” to mean the shock front. In this approach, at and near the shock fronts, we use enhanced discretization to increase the accuracy in representing those shocks. Later, the EDICT was extended to computation of vortex flows. The results were first reported in [19, 20]. In this case, the definition of the interface is extended to mean regions where the vorticity magnitude is larger than a specified value.

Here we describe how we extend EDICT to computation of flow problems with boundary layers. In this offshoot, the “interface” means solid surfaces with boundary layers. In 3D problems with complex geometries and boundary layers, mesh generation poses a serious challenge. This is because accurate resolution of the boundary layer requires elements that are very thin in the direction normal to the solid surface. This needs to be accomplished without having a major increase in mesh refinement also in the tangential directions or creating very distorted elements. Otherwise, we might be increasing the computational cost excessively or decreasing the numerical accuracy unacceptably. In the Enhanced-Discretization Mesh Refinement Technique (EDMRT), we propose two different ways of using the EDICT concept to increase the mesh refinement in the boundary layers in a desirable fashion. In the EDICT-Clustered-Mesh-2 approach, Mesh-2 is constructed by patching together clusters of second-level meshes generated over each element of Mesh-1 designated to be one of the “boundary layer elements”. Depending on the type of these boundary layer elements in Mesh-1, Mesh-2 could be structured or unstructured, with hexahedral, tetrahedral or triangle-based prismatic elements. In the EDICT-Layered-Mesh-2 approach, a thin but multi-layered and more refined Mesh-2 is “laid over” the solid surfaces. Depending on the geometric complexity of the solid surfaces and depending on whether we prefer the same type elements as those we used in Mesh-1, the elements in Mesh-2 could be hexahedral, tetrahedral or triangle-based prismatic elements. The EDMRT, as an EDICT-based boundary layer mesh refinement strategy, would allow us accomplish our objective without facing the implementational difficulties associated with elements having variable number of nodes.

In the Enhanced-Discretization Space-Time Technique (EDSTT), we propose to use enhanced time-discretization in the context of a space-time formulation. The motivation is to have a flexible way of carrying out time-accurate computations of fluid-structure interactions where we find it necessary to use smaller time steps for the structural dynamics part. There would be two ways of formulating EDSTT. In the EDSTT-Single-Mesh (EDSTT-SM) approach, a single space-time mesh, unstructured both in space and time, would be used to enhance the time-discretization in regions of the fluid domain near the structure. This, in general, might require a fully unstructured 4D mesh generation. In the EDSTT-Multi-Mesh (EDSTT-MM) approach, multiple space-time meshes, all structured in time, would be used to enhance the time-discretization in regions of the fluid domain near the structure. In a way, this would be the space-time version of the EDMRT. This approach would not require a fully unstructured 4D mesh generation, and therefore would not pose a mesh generation difficulty. In general, EDSTT can be used in time-accurate computations where we require smaller time steps in certain parts of the fluid domain. For example, where the spatial element sizes are small, we may need to use small time steps, so that the element Courant number does not become too large. In computation of two-fluid interface (or free-surface) flows with the DSD/SST method, time-integration of the equation governing the evolution of the interface (i.e. the interface update equation) may require a smaller time step than the one used for the fluid interiors. This requirement might be coming from numerical stability considerations, when time-integration of the interface update equation does not involve any added stabilization terms. In such cases, time-integration
with sub-time-stepping on the interface update equation can be based on the EDSTT-SM or EDSTT-MM approaches. As an alternative or complement to these approaches, the sub-time-stepping on the interface update equation can be accomplished with the Interpolated Sub-Time-Stepping Technique (ISTST).

In the ISTST, time-integration of the interface update equation with smaller time steps would be carried out separately from the fluid interiors. The information between the two parts would be exchanged by interpolation. The sub-time-stepping sequence for the interface update, together with the interpolations between the interface and fluid interiors, would be embedded in the iterative solution technique used for the fluid interiors, and would be repeated at every iteration. The iterative solution technique, which is based on the Newton-Raphson method, addresses both the nonlinear and the coupled nature of the set of equations that needs to be solved at each time step of the time-integration of the fluid interiors. When the ISTST is applied to computation of fluid-structure interactions, a separate, “inner” Newton-Raphson sequence would be used at each time step of the sub-time-stepping on the structural dynamics equations.

Whether we are using a space-time formulation or a semi-discrete formulation, at every time step of the computation, we need to solve a coupled, nonlinear equation system, and we use the Newton-Raphson method for this purpose. Sometimes, some parts of the computational domain may offer more of a challenge for the Newton-Raphson method than the others. This might happen, for example, at the fluid-solid interface in a fluid-structure interaction problem, and in such cases the nonlinear convergence might become even a bigger challenge if the structure is going through some sort of buckling or wrinkling. It might also happen at a fluid-fluid interface, for example, if the interface is very unsteady. In the Enhanced-Iteration Nonlinear Solution Technique (EINST), as a variation of the Newton-Raphson method, we propose to use sub-iterations in the parts of the domain where we are facing a nonlinear convergence challenge. This could be implemented, for example, by identifying the nodes of the zones where we need enhanced iterations, and performing multiple iterations for those nodes for each iteration we perform for all other nodes. In time-accurate computations of fluid-structure interactions with the EDSTT-SM or EDSTT-MM approaches, the EINST can be used to allow for a larger number of nonlinear iterations for the structural dynamics equations.

A coupled, linear equation system needs to be solved at every step of the Newton-Raphson sequence. In the class of computations we typically carry out, this equation system would be too large to solve with a direct method. Therefore we solve it iteratively. In these iterations, we use a preconditioning matrix, which is essentially an approximation to the original matrix of the coupled, linear equation system. Because of its simplicity and parallel computation efficiency, in most cases we use a diagonal matrix as the approximation. In some challenging cases, this simple approach might not lead to a satisfactory level of convergence at some locations, in the parts of the domain posing the challenge. This might happen, for example, in a fluid-structure interaction problem, where the structure or the fluid zones near the structure might be suffering from convergence problems, the situation might become worse if the structure is going through buckling or wrinkling. It might also happen at a fluid-fluid interface. We might also face this difficulty in the SEMMT described in the section on mesh update methods, if the elasticity equations for the nodes connected to the thin elements are solved together with the elasticity equations for the other nodes. In the Enhanced-Approximation Linear Solution Technique (EALST), we propose to use stronger approximations for the parts of the domain where we are facing convergence challenges. This could be implemented, for example, by identifying the elements covering the zones where we need enhanced approximation, and reflecting this in defining the element-level constituents of the approximation matrix. For example, for the elements that need stronger approximations, we can use as the element-level approximation matrix the full element-level matrix, while for all other elements we use a diagonal element-level matrix.
8 Mixed Interface-Tracking/Interface-Capturing Technique

In computation of flow problems with fluid-solid interfaces, an interface-tracking technique, where the fluid mesh moves to track the interface, would allow us to have full control of the resolution of the fluid mesh in the boundary layers. With an interface-capturing technique (or an interface representation technique in the more general case), on the other hand, independent of how well the interface geometry is represented, the resolution of the fluid mesh in the boundary layer will be limited by the resolution of the fluid mesh where the interface is. In computation of flow problems with fluid-fluid interfaces where the interface is too complex or unsteady to track while keeping the remeshing frequency under control, interface-capturing techniques, with enhanced-discretization as needed, could be used as more flexible alternatives. Sometimes we may need to solve flow problems with both fluid-solid interfaces and complex or unsteady fluid-fluid interfaces.

MITICT was introduced in [2], primarily for fluid-object interactions with multiple fluids. The class of applications we were targeting were fluid-particle-gas interactions and free-surface flow of fluid-particle mixtures. However, the MITICT can be applied to a larger class of problems, where it is more effective to use an interface-tracking technique to track the solid-fluid interfaces and an interface-capturing technique to capture the fluid-fluid interfaces. The interface-tracking technique is the DSD/SST formulation (but could as well be the Arbitrary Lagrangian-Eulerian method or other moving mesh methods). The interface-capturing technique rides on this, and is based on solving over a moving mesh, in addition to the Navier-Stokes equations, the advection equation governing the time-evolution of the interface function. The additional DSD/SST formulation is for this advection equation:

\[
\int_{Q_n} \psi^h \left(\frac{\partial \phi^h}{\partial t} + \mathbf{u}^h \cdot \nabla \phi^h \right) dQ \quad + \int_{\Omega_n} \left(\psi^h \frac{\partial \phi^h}{\partial n} \right) d\Omega \\
+ \sum_{\epsilon=1}^{[n+1]} \int_{Q_n} \tau^\phi \left(\frac{\partial \psi^h}{\partial t} + \mathbf{u}^h \cdot \nabla \psi^h \right) \left(\frac{\partial \phi^h}{\partial n} + \mathbf{u}^h \cdot \nabla \phi^h \right) dQ = 0. \tag{17}
\]

This equation, together with Eq. (12), constitute a mixed interface-tracking/interface-capturing technique that would track the solid-fluid interfaces and capture the fluid-fluid interfaces that would be too complex or unsteady to track with a moving mesh. The interface-capturing part of MITICT can be upgraded to the EDICT formulation for more accurate representation of the interfaces captured.

The MITICT can also be used for computation of fluid-structure interactions with multiple fluids or for flows with mechanical components moving in a mixture of two fluids. In more general cases, the MITICT can be used for classes of problems that involve both interfaces that can be accurately tracked with a moving mesh method and interfaces that are too complex or unsteady to be tracked and therefore require an interface-capturing technique.

9 Edge-Tracked Interface Locator Technique

The Edge-Tracked Interface Locator Technique (ETILT) was introduced in [2], to have an interface-capturing technique with better volume conservation properties and sharper representation of the interfaces. To this end, we first define a second finite-dimensional representation of the interface function, namely \(\phi^{he} \). With \(\phi^{he} \), interfaces are represented as collection of positions along element edges crossed by the interfaces. Nodes belong to “chunks” of Fluid A or Fluid B. An edge either belongs to a chunk
of Fluid A or Fluid B or is an interface edge. Each element is either filled fully by a chunk of Fluid A or Fluid B, or is shared by a chunk of Fluid A and a chunk of Fluid B. If an element is shared like that, the shares are determined by the position of the interface along the edges of that element. The base finite element formulation is essentially the one described by Eqs. (15) and (16). Although the ETILT can be used in combination with the EDICT, we assume that we are working here with the plain, non-EDICT versions of Eqs. (15) and (16).

At each time step, given \(u^h_n \) and \(\phi^h_n \), we determine \(u^{h+1}_n \), \(p^{h+1}_n \), and \(\phi^{h+1}_n \). The definitions of \(\rho \) and \(\mu \) are modified to use the edge-based representation of the interface function:

\[
\rho^h = \phi^h \rho_A + (1 - \phi^h) \rho_B, \\
\mu^h = \phi^h \mu_A + (1 - \phi^h) \mu_B.
\]

In marching from time level \(n \) to \(n + 1 \), we first calculate \(\phi^h_n \) from \(\phi^h_n \) by a least-squares projection:

\[
\int_{\Omega} \psi^h (\phi^h - \phi^h_n) \, d\Omega = 0.
\]

To calculate \(\phi^h_{n+1} \), we use Eq. (16). From \(\phi^h_{n+1} \), we calculate \(\phi^h_{n+1} \) by a combination of a least-squares projection:

\[
\int_{\Omega} (\psi^h_{n+1} \rho - \phi^h_{n+1}) \, d\Omega = 0,
\]

and corrections to enforce volume conservation for all chunks of Fluid A and Fluid B, taking into account the mergers between the chunks and the split of chunks. This volume conservation condition can symbolically be written as \(VOL (\phi^h_{n+1}) = VOL (\phi^h_n) \). Here the subscript \(P \) is used for representing the intermediate values following the projection, but prior to the corrections for volume conservation. These projections and volume corrections are embedded in the iterative solution technique, and are carried out at each iteration (see [2]).

As an alternative to using the advection equation given by Eq. (16) and the projections given by Eqs. (18) and (19), at each time step we can calculate \(\phi^h_{n+1} \) by time-integrating an equation governing the positions of the interface along element edges crossed by the interface. For that purpose, for each element edge crossed by the interface, we write the following equation:

\[
\frac{ds}{dt} \mathbf{e}_s \cdot \mathbf{n} = \mathbf{u} \cdot \mathbf{n},
\]

where \(s \) is the position of the interface along the edge, \(\mathbf{e}_s \) is the unit vector along the edge, \(\mathbf{n} \) is the unit vector normal to the interface at the point it is pierced by the edge, and \(\mathbf{u} \) is the fluid velocity at that point.

In time-integration of this equation, we can use sub-time-stepping techniques based on the EDSTT and ISTST described in Section 7. To differentiate this version of ETILT from the previous one, we name the first one ETILT-A and this second one ETILT-B.

10 Line-Tracked Interface Update Technique

It was mentioned in Section 7 that in computation of two-fluid interface (or free-surface) flows with the DSD/SST method, time-integration of the interface update equation may require a smaller time step than the one used for the fluid interiors. This might be avoided if the time-integration of the interface update equation is based on a stabilized formulation. To this end, we propose the Line-Tracked Interface Update Technique (LTIUT).

Let us assume that as we march from time level \(n \) to \(n + 1 \), each interface node \(A \) traces a line identified with unit vector \(\mathbf{e}_A \). Typically we would select \(\mathbf{e}_A = \mathbf{n}_A \), where \(\mathbf{n}_A \) is the unit vector normal to the interface.
at node A. We let s_A denote the position of node A along that line. The interface update task would then consist of calculating, for each node A, the unknown value $(s_A)_{n+1}$. We define a local coordinate system (x, y, z) associated with the interface node A, where e_z is the unit vector along the coordinate axis z, and $e_x = e_A$. We define the 2D spatial domain Ω_A to be the projection of the cluster of 2D interface elements sharing the node A onto the xy-plane. Limited to Ω_A and the interval from time level n to $n+1$, we write the following equation:
\[
\frac{\partial z}{\partial t} + u_{xy} \cdot (\nabla_{xy}) z - u_z = 0 ,
\]
where
\begin{align*}
 u_z &= e_z \cdot u , \\
 u_{xy} &= u - u_z e_z , \\
 \nabla_{xy} &= \nabla - (e_z \cdot \nabla) e_z .
\end{align*}

We note that while the projected position of node A remains fixed in the xy-plane, in general we cannot say the same thing for any other node B in the cluster of 2D interface elements sharing node A. Because, as we march from time level n to $n+1$, node B traces its own line, with unit vector e_B. Therefore, unless $e_x \cdot e_B = 1$, the position of node B in the xy-plane changes. Consequently, Ω_A changes its shape (i.e. deforms). With that in mind, we can solve Eq. (21) with the DSD/SST formulation, using the concepts and approaches we used in Sections 4 and 8. The DSD/SST formulation of Eq. (21) can be written as
\[
\int_{(Q_A)} N_A \left(\frac{\partial z^h}{\partial t} + u_{xy}^h \cdot (\nabla_{xy}) z^h - u_z^h \right) \, dQ + \int_{(\Omega_A)} (N_A)^+ \left((z^h)^+ - (z^h)^- \right) \, d\Omega \\
+ \sum_{\epsilon=1}^{[(n,\epsilon)]}_n \int_{(Q_A)} \tau_z \left(\frac{\partial N_A}{\partial t} + u_{xy}^h \cdot (\nabla_{xy}) N_A \right) \left(\frac{\partial z^h}{\partial t} + u_{xy}^h \cdot (\nabla_{xy}) z^h - u_z^h \right) \, dQ = 0 .
\]

Here $(Q_A)_n$ is the space-time slab associated with Ω_A, N_A is the space-time finite element interpolation function corresponding to node A, $[(n,\epsilon)]_n$ is the number of space-time elements in $(Q_A)_n$, $(Q_A)^+_n$ is a space-time element, and τ_z is the SUPG stabilization parameter.

Eq. (25) would be used for generating a fully-discrete equation associated with each interface node A. We note that the variables $(z_A)^+_n$, $(z_A)^-_n$, $(z_B)^+_n$, and $(z_B)^-_n$ are dummy unknowns. The real unknowns we are tracking of are $(s_A)_{n+1}$ and $(s_B)_{n+1}$, with the following relationship to the dummy unknowns:
\[
(z_B)^-_n - (z_B)^-_n = (e_z \cdot e_A) \left((s_B)_{n+1} - (s_B)_n \right) .
\]

11 Concluding Remarks

In this paper, we provided an overview of the stabilized finite element interface-tracking and interface-capturing techniques we have developed in recent years for computation of flow problems with moving boundaries and interfaces. The interface-tracking techniques are based on the DSD/SST formulation, where the mesh moves to track the interface. The interface-capturing techniques, which were developed for two-fluid flows, are based on the stabilized formulation, over non-moving meshes, of both the flow equations and an advection equation. The advection equation governs the time-evolution of the interface function marking the interface location. We also described in this paper some of the additional
methods developed to increase the scope and accuracy of the interface-tracking and interface-capturing techniques. Among these methods are the EDICT, which was developed to increase the accuracy in capturing the interface, and extensions and offshoots of the EDICT, such as the EDMRT, EDSTT, EINST, and EALST. Also among these methods are the MITICT, ETILT and LTIUT. The MITICT was developed for the classes of problems that involve both interfaces that can be accurately tracked with a moving mesh method and interfaces that are too complex or unsteady to be tracked and therefore require an interface-capturing technique. The ETILT was developed to improve the interface-capturing techniques with better volume conservation properties and sharper representation of the interfaces. With the LTIUT, in computation of two-fluid interfaces with the DSD/SST method, the interface update equation can be solved with a stabilized formulation.

Acknowledgments

This work was supported by the Army Natick Soldier Center and NASA JSC.

References

