TAFSM

Team for Advanced Flow Simulation and Modeling



Home

Research Overview

Research Highlights

Projects

Takizawa Lab

Undergraduate Research

TAFSM Featured

TAFSM Recognized

Publication, Preprints

Currrent Team Members

Collaborators, Ex-Members

AHPCRC, History

Links

For more information:
  tezduyar@gmail.com



Research Overview

Examples

Special Space-Time FSI Techniques for Spacecraft Parachutes
Wall Shear Stress and Oscillatory Shear Index Calculations With Refined Meshes
Multiscale Sequentially-Coupled Arterial FSI
Cerebral Aneurysm -- High-Resolution Wall Shear Stress
Cerebral Aneurysm -- Improved Boundary Layer Resolution
Orion Spacecraft Parachutes
FSI Modeling of Sails
Cerebral Aneurysm -- Hyperelastic Arterial Wall
Windsock
FSI with Contact: A Cloth Piece Falling Over a Rigid Bar

For more, see Research Highlights and Projects.


Objective

Our research objective is to develop and test advanced computational methods to support flow simulation and modeling in a number of “targeted challenges” identified by our team as areas of computational technology and science where we expect to make an impact. The goal is to create a simulation and modeling environment that can be used effectively to investigate challenging technological issues and complex, real-world problems in mechanical engineering, biomechanics, aerospace engineering, and applied fluid mechanics. This goal includes understanding the basic scientific phenomena embedded in these technological issues and problems as well as influencing the engineering and design considerations involved.

Targeted Challenges

The T*AFSM is focusing on, as their “targeted challenges”, the classes of problems listed below (last update: July 13, 2006).

  • Fluid-structure interactions [12345678910111213141516171819,  202122232425262728293031323334353637383940414243,  4445], including fluid-structure interactions with contact [44].
  • Cardiovascular fluid mechanics and fluid-structure interactions [4647484950]. Examples: fluid-structure interactions in a cerebral aneurysm and a carotid artery, under normal and high blood pressure conditions.
  • Parachute modeling and fluid-structure interactions [9515210111213141516,  171819252122232428293233363738344142535444]. Examples: aerodynamic behavior of round, cross and ram-air parachutes and complex parachute designs, aerodynamic interaction between an aircraft and a paratrooper, a parachute crossing the wake flow of an aircraft, interaction between multiple parachute canopies, gliding, disreefing, and soft landing
  • Air circulation and contaminant dispersion [9511112]. Example: contaminant dispersion in a subway station.
  • Flows with moving mechanical components [12346755956111257192058,  25262731353940]. Example: two high-speed trains passing each other in a tunnel, flow past a propeller, and flow past a helicopter rotor-fuselage combination.
  • Unsteady flows with interfaces, including free-surface flows and two-fluid interfaces [1234659760619516263641112,  65661920252627316768353338394069707145]. Examples: sloshing in a liquid-storage tank and a tanker truck, free-surface flow past a cylinder, flow in the spillway of a dam, tidal flows, storm surges, and mold filling.
  • Fluid-object interactions, including fluid-particle interactions and mixtures [123467607297351747576111277171819,  205825262731353839407045]. Examples: particles falling in a liquid-filled tube, with the number of particles ranging from 2-5 to 1000.
  • Aerodynamics and hydrodynamics of complex shapes [679517411121756181957,  27]. Examples: ground vehicles such as cars and trains, helicopters, aircraft, spacecraft, and submarines
  • 2D incompressible-flow computation of fundamental fluid mechanics problems: lid-driven flow in a cavity [782798081], flow past a plate [72], flow past two flat plates normal to the flow [7882], jet flow impinging on a wedge (edgetone problem) [838485], flow past a fixed cylinder [838486878818990247959181929394259596], flow past a bank of cylinders [78], flow past a periodic array of cylinders [9798], flow past a drifting cylinder [123], flow past an oscillating cylinder [4592], long-wake flow behind a cylinder [45], flow past a fixed airfoil [460], flow past a pitching airfoil [456927260], flow past a falling airfoil [47], a pulsating liquid drop [13].
  • 2D compressible-flow computation of fundamental fluid mechanics problems: flow past a thin biconvex airfoil [99100101102], flow past a cylinder [1001018010210394104], flow past a pitching airfoil [105], flow past a plate [106].
  • Axisymmeric incompressible-flow computation of fundamental fluid mechanics problems: a viscous drop falling in a liquid [4660].
  • 3D incompressible-flow computation of fundamental fluid mechanics problems: flow past a cylinder [55107], long-wake flow behind a cylinder [12108109110], long-wake flow behind a wing [108], flow past a sphere [55111], flow past a wing [78], flow past a flapping wing pair [8], natural convection in a container [51], flow between two concentric cylinders (Taylor-Couette flow) [67], flow-induced vibrations of a flexible pipe [78], turbulent flow in a channel [112].
  • 3D compressible-flow computation of fundamental fluid mechanics problems: flow past a sphere [7104].

Computational Methods Developed

The advanced methods developed by the T*AFSM include those listed below.

  • Special numerical stabilization methods for compressible and incompressible flows, including the SUPG [9910011310110217994114192539] and PSPG [179941141925,  39] formulations, methods for fractional-step time-integration techniques [868879], methods for advection-diffusion-reaction equations [113115116], and methods the vorticity-stream function [831177886] and velocity-pressure-stress [481] forms of the Navier-Stokes equations.
  • Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation for problems with moving boundaries and interfaces, including fluid-structure interactions, fluid-object and fluid-particle interactions, and free-surface and two-fluid flows [123467951111219,  2025263033363739].
  • Techniques for determining the stabilization parameters in SUPG, PSPG, and DSD/SST formulations [9910011311810110212379114119,  27259596120313512112239123124125126127104].
  • Discontinuity-capturing (DC) techniques, Diffusion for Reaction-Dominated (DRD) technique, and Discontinuity-Capturing Directional Dissipation (DCDD) technique [113115119259527,  120313512139128112116].
  • Shock-capturing techniques for compressible flows and YZBeta shock-capturing [10110227120,  313512139122127104].
  • DSD/SST formulation for fluid-object interactions in spatially-periodic flow domains [771927].
  • DSD/SST formulation for shallow water equations [19].
  • Advanced mesh update methods for problems with moving boundaries and interfaces [13456,  7609735174567611125719202426273129343536374244].
  • Shear-Slip Mesh Update Method (SSMUM) for computation of flows with objects in fast, linear or rotational relative motion [5595611571927].
  • Solid-Extension Mesh Moving Technique (SEMMT) [2026273129343536374244].
  • Move-Reconnect-Renode Mesh Update Method (MRRMUM) [4244].
  • Fluid-structure coupling techniques for space-time finite element computation of fluid-structure interactions [1015132935333637414244].
  • Surface-Edge-Node Contact Tracking (SENCT) technique for fluid-structure interactions with contact [44] .
  • Multiscale interface-capturing (Enhanced-Discretization Interface-Capturing Technique) (EDICT) for free-surface flows and two-fluid interfaces, for compressible flows with shocks, and for vortex flows [6310312176518192026313533383940].
  • Multiscale time-integration techniques [129202627303140]
  • Multiscale space-time technique (Enhanced-Discretization Space-Time Technique) (EDSTT) for computation of fluid-structure interactions where the fluid and structure have substantially different time scales [202627303140].
  • Multiscale discretization and iteration method (Enhanced-Discretization Successive Update Method) (EDSUM) for computation of the flow behavior at small scales and for increasing the convergence of the iterative solution [1935273135331303840].
  • Multiscale selective stabilization technique (Enhanced-Discretization Selective Stabilization Procedure) (EDSSP) for applying numerical stabilization selectively at different scales [3533130,  128].
  • Interface-capturing techniques for free-surface flows and two-fluid interfaces [636566192067,  682627313940697145].
  • Edge-Tracked Interface Locator Technique (ETILT) for free-surface flows and two-fluid interfaces [1920262731353338406971].
  • Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) for fluid-structure and fluid-object interactions with free-surface flows and two-fluid interfaces [19202627313533,  383970].
  • CIP method based on adaptive meshless Soroban grids for computation of fluid-structure and fluid-object interactions with free-surface flows and two-fluid interfaces [45].
  • Multi-Domain Method (MDM) for computation of long-wake flows [121081710911018].
  • A unified finite element formulation for compressible and incompressible flows in augmented conservation variables [94].
  • Stabilized formulations for shallow water equations [616264].
  • Fluid-Object Interactions Subcomputation Technique (FOIST) and Beyond-FOIST (B-FOIST) [19273140].
  • Space-Time Contact Technique (STCT) [121927].
  • Iterative solution methods for large, coupled nonlinear equation systems [8478851314680,  59951111321219202627133313533130381344043].
  • Adaptive Implicit-Explicit (AIE) technique for more efficient iterative solution [788785].
  • Advanced preconditioning techniques for solution of large, coupled linear equation systems, including the Grouped Element-by-Element (GEBE), Clustered Element-by-Element (CEBE) and mixed CEBE/Cluster Companion (CEBE/CC) preconditioning techniques [847887854801319,  51132111219202627133313533130384013443].
  • Enhanced-Approximation Linear Solution Technique (EALST) for improved iterative convergence, with enhanced approximation (preconditioning) in subdomains selected in a static or dynamic way [2026271333140].
  • Parallel computing methods [4692597608135559517462521013210764,  11121519136134].

References

[1]   T.E. Tezduyar, “Stabilized finite element formulations for incompressible flow computations”, Advances in Applied Mechanics, 28 (1992) 1-44.

[2]   T.E. Tezduyar, M. Behr, and J. Liou, “A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests”, Computer Methods in Applied Mechanics and Engineering, 94 (1992) 339-351.

[3]   T.E. Tezduyar, M. Behr, S. Mittal, and J. Liou, “A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders”, Computer Methods in Applied Mechanics and Engineering, 94 (1992) 353-371.

[4]   T.E. Tezduyar, M. Behr, S. Mittal, and A.A. Johnson, “Computation of unsteady incompressible flows with the finite element methods - space-time formulations, iterative strategies and massively parallel implementations”, in New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York, (1992) 7-24.

[5]   S. Mittal and T.E. Tezduyar, “A finite element study of incompressible flows past oscillating cylinders and aerofoils”, International Journal for Numerical Methods in Fluids, 15 (1992) 1073-1118.

[6]   T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal, “Parallel finite-element computation of 3D flows”, Computer, 26 (1993) 27-36.

[7]   T.E. Tezduyar, S.K. Aliabadi, M. Behr, and S. Mittal, “Massively parallel finite element simulation of compressible and incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 157-177.

[8]   S. Mittal and T.E. Tezduyar, “Parallel finite element simulation of 3D incompressible flows - Fluid-structure interactions”, International Journal for Numerical Methods in Fluids, 21 (1995) 933-953.

[9]   T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V. Kalro, and M. Litke, “Flow simulation and high performance computing”, Computational Mechanics, 18 (1996) 397-412.

[10]   K.R. Stein, R.J. Benney, V. Kalro, A.A. Johnson, and T.E. Tezduyar, “Parallel computation of parachute fluid-structure interactions”, in Proceedings of AIAA 14th Aerodynamic Decelerator Systems Technology Conference, AIAA Paper 97-1505, San Francisco, California, (1997).

[11]   T.E. Tezduyar, “CFD methods for three-dimensional computation of complex flow problems”, Journal of Wind Engineering and Industrial Aerodynamics, 81 (1999) 97-116.

[12]   T. Tezduyar and Y. Osawa, “Methods for parallel computation of complex flow problems”, Parallel Computing, 25 (1999) 2039-2066.

[13]   K. Stein, R. Benney, T. Tezduyar, V. Kalro, J. Leonard, and M. Accorsi, “3-D computation of parachute fluid-structure interactions: Performance and control”, in Proceedings of CEAS/AIAA 15th Aerodynamic Decelerator Systems Technology Conference, AIAA Paper 99-1714, Toulouse, France, (1999).

[14]   K. Stein, R. Benney, T. Tezduyar, V. Kalro, J. Potvin, and T. Bretl, “3-D computation of parachute fluid-structure interactions: Performance and control”, in Proceedings of CEAS/AIAA 15th Aerodynamic Decelerator Systems Technology Conference, AIAA Paper 99-1725, Toulouse, France, (1999).

[15]   V. Kalro and T.E. Tezduyar, “A parallel 3D computational method for fluid-structure interactions in parachute systems”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 321-332.

[16]   K. Stein, R. Benney, V. Kalro, T.E. Tezduyar, J. Leonard, and M. Accorsi, “Parachute fluid-structure interactions: 3-D Computation”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 373-386.

[17]   T. Tezduyar and Y. Osawa, “The Multi-Domain Method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft”, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 705-716.

[18]   T. Tezduyar and Y. Osawa, “Fluid-structure interactions of a parachute crossing the far wake of an aircraft”, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 717-726.

[19]   T.E. Tezduyar, “Finite element methods for flow problems with moving boundaries and interfaces”, Archives of Computational Methods in Engineering, 8 (2001) 83-130.

[20]   T. Tezduyar, “Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces”, in Proceedings of the ASME Symposium on Fluid-Physics and Heat Transfer for Macro- and Micro-Scale Gas-Liquid and Phase-Change Flows (CD-ROM), ASME Paper IMECE2001/HTD-24206, ASME, New York, New York, (2001).

[21]   K. Stein, R. Benney, T. Tezduyar, and J. Potvin, “Fluid-structure interactions of a cross parachute: Numerical simulation”, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 673-687.

[22]   K.R. Stein, R.J. Benney, T.E. Tezduyar, J.W. Leonard, and M.L. Accorsi, “Fluid-structure interactions of a round parachute: Modeling and simulation techniques”, Journal of Aircraft, 38 (2001) 800-808.

[23]   K. Stein, T. Tezduyar, V. Kumar, S. Sathe, R. Benney, E. Thornburg, C. Kyle, and T. Nonoshita, “Aerodynamic interactions between parachute canopies”, Journal of Applied Mechanics, 70 (2003) 50-57.

[24]   K. Stein, T. Tezduyar, and R. Benney, “Mesh moving techniques for fluid-structure interactions with large displacements”, Journal of Applied Mechanics, 70 (2003) 58-63.

[25]   T.E. Tezduyar, “Computation of moving boundaries and interfaces and stabilization parameters”, International Journal for Numerical Methods in Fluids, 43 (2003) 555-575.

[26]   T. Tezduyar, “Interface-tracking and interface-capturing techniques for computation of moving boundaries and interfaces”, in Proceedings of the Fifth World Congress on Computational Mechanics, On-line publication: http://wccm.tuwien.ac.at/, Paper-ID: 81513, Vienna, Austria, (2002).

[27]   T.E. Tezduyar, “Finite element methods for fluid dynamics with moving boundaries and interfaces”, in E. Stein, R. De Borst, and T.J.R. Hughes, editors, Encyclopedia of Computational Mechanics, Volume 3: Fluids, Chapter 17, John Wiley & Sons, 2004.

[28]   K. Stein, T. Tezduyar, and R. Benney, “Applications in airdrop systems: Fluid-structure interaction modeling”, in Proceedings of the Fifth World Congress on Computational Mechanics (Web Site), On-line publication: http://wccm.tuwien.ac.at/, Paper-ID: 81545, Vienna, Austria, (2002).

[29]   K. Stein, T. Tezduyar, and R. Benney, “Computational methods for modeling parachute systems”, Computing in Science and Engineering, 5 (2003) 39-46.

[30]   T.E. Tezduyar and S. Sathe, “Enhanced-discretization space-time technique (EDSTT)”, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 1385-1401.

[31]   T.E. Tezduyar, “Stabilized finite element methods for computation of flows with moving boundaries and interfaces”, in Lecture Notes on Finite Element Simulation of Flow Problems (Basic - Advanced Course), Japan Society of Computational Engineering and Sciences, Tokyo, Japan, (2003).

[32]   K. Stein, T. Tezduyar, R. Benney, M. Accorsi, and H. Johari, “Computational modeling of parachute fluid-structure interactions”, Computational Fluid Dynamics Journal, 12 (2003) 516-526.

[33]   T.E. Tezduyar, “Moving boundaries and interfaces”, in L.P. Franca, T.E. Tezduyar, and A. Masud, editors, Finite Element Methods: 1970’s and Beyond, 205-220, CIMNE, Barcelona, Spain, 2004.

[34]   K. Stein, T.E. Tezduyar, and R. Benney, “Automatic mesh update with the solid-extension mesh moving technique”, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 2019-2032.

[35]   T.E. Tezduyar, “Stabilized finite element methods for flows with moving boundaries and interfaces”, HERMIS: The International Journal of Computer Mathematics and its Applications, 4 (2003) 63-88.

[36]   T.E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, “Space-time techniques for finite element computation of flows with moving boundaries and interfaces”, in S. Gallegos, I. Herrera, S. Botello, F. Zarate, and G. Ayala, editors, Proceedings of the III International Congress on Numerical Methods in Engineering and Applied Science, CD-ROM, 2004.

[37]   T.E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, “Space-time finite element techniques for computation of fluid-structure interactions”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 2002-2027.

[38]   T.E. Tezduyar, “Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 2983-3000.

[39]   T.E. Tezduyar, “Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces”, Computers & Fluids, published online, December 2005.

[40]   T.E. Tezduyar, “Finite elements in fluids: Special methods and enhanced solution techniques”, Computers & Fluids, published online, January 2006.

[41]   T.E. Tezduyar, S. Sathe, and K. Stein, “Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 5743-5753.

[42]   T.E. Tezduyar, S. Sathe, M. Senga, L. Aureli, K. Stein, and B. Griffin, “Finite element modeling of fluid-structure interactions with space-time and advanced mesh update techniques”, in Proceedings of the 10th International Conference on Numerical Methods in Continuum Mechanics (CD-ROM), Zilina, Slovakia, (2005).

[43]   T. Washio, T. Hisada, H. Watanabe, and T.E. Tezduyar, “A robust preconditioner for fluid-structure interaction problems”, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 4027-4047.

[44]   T.E. Tezduyar, S. Sathe, K. Stein, and L. Aureli, “Modeling of fluid-structure interactions with the space-time technique”, in H-J. Bungartz and M. Schafer, editors, Fluid-Structure Interaction, Lecture Notes on Computational Science and Engineering, Springer, 2006.

[45]   K. Takizawa, T. Yabe, Y. Tsugawa, T.E. Tezduyar, and H. Mizoe, “Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless Soroban grids”, Computational Mechanics, published online, July 2006.

[46]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Computation of cardiovascular fluid-structure interactions with the DSD/SST method”, in Proceedings of the 6th World Congress on Computational Mechanics (CD-ROM), Beijing, China, (2004).

[47]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Influence of wall elasticity on image-based blood flow simulation”, Japan Society of Mechanical Engineers Journal Series A, 70 (2004) 1224-1231, in Japanese.

[48]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Computer modeling of cardiovascular fluid-structure interactions with the Deforming-Spatial-Domain/Stabilized Space-Time formulation”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1885-1895.

[49]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Influence of wall elasticity in patient-specific hemodynamic simulations”, Computers & Fluids, published online, December 2005.

[50]   R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T.E. Tezduyar, “Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures”, Computational Mechanics, 38 (2006) 482-490.

[51]   T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V. Kalro, and M. Litke, “High performance computing techniques for flow simulations”, in M. Papadrakakis, editor, Solving Large-Scale Problems in Mechanics: Parallel Solution Methods in Computational Mechanics, Chapter 10, 363-398, John Wiley & Sons, 1997.

[52]   T. Tezduyar, V. Kalro, and W. Garrard, “Parallel computational methods for 3D simulation of a parafoil with prescribed shape changes”, Parallel Computing, 23 (1997) 1349-1363.

[53]   K. Stein, T.E. Tezduyar, S. Sathe, R. Benney, and R. Charles, “Fluid-structure interaction modeling of parachute soft-landing dynamics”, International Journal for Numerical Methods in Fluids, 47 (2005) 619-631.

[54]   S. Sathe, R. Benney, R. Charles, E. Doucette, J. Miletti, M. Senga, K. Stein, and T.E. Tezduyar, “Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques”, Computers & Fluids, published online, December 2005.

[55]   V. Kalro and T.E. Tezduyar, “Parallel finite element computation of 3D incompressible flows on MPPs”, in W.G. Habashi, editor, Solution Techniques for Large-Scale CFD Problems, John Wiley & Sons, 1995.

[56]   M. Behr and T. Tezduyar, “The Shear-Slip Mesh Update Method”, Computer Methods in Applied Mechanics and Engineering, 174 (1999) 261-274.

[57]   M. Behr and T. Tezduyar, “Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components”, Computer Methods in Applied Mechanics and Engineering, 190 (2001) 3189-3200.

[58]   S.E Ray and T.E. Tezduyar, “Fluid-object interactions in interior ballistics”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 363-372.

[59]   M. Behr and T.E. Tezduyar, “Finite element solution strategies for large-scale flow simulations”, Computer Methods in Applied Mechanics and Engineering, 112 (1994) 3-24.

[60]   A.A. Johnson and T.E. Tezduyar, “Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces”, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 73-94.

[61]   K. Kashiyama, H. Ito, M. Behr, and T. Tezduyar, “Three-step explicit finite element computation of shallow water flows on a massively parallel computer”, International Journal for Numerical Methods in Fluids, 21 (1995) 885-900.

[62]   K. Kashiyama, K. Saitoh, M. Behr, and T.E. Tezduyar, “Parallel finite element methods for large-scale computation of storm surges and tidal flows”, International Journal for Numerical Methods in Fluids, 24 (1997) 1371-1389.

[63]   T. Tezduyar, S. Aliabadi, and M. Behr, “Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces”, Computer Methods in Applied Mechanics and Engineering, 155 (1998) 235-248.

[64]   K. Kashiyama, Y. Ohba, T. Takagi, M. Behr, and T. Tezduyar, “Parallel finite element method utilizing the mode splitting and sigma coordinate for shallow water flows”, Computational Mechanics, 23 (1999) 144-150.

[65]   T.E Tezduyar and S. Aliabadi, “EDICT) for 3D computation of two-fluid interfaces”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 403-410.

[66]   S. Aliabadi and T.E. Tezduyar, “Stabilized-Finite-Element/Interface-Capturing Technique for parallel computation of unsteady flows with interfaces”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 243-261.

[67]   M. Cruchaga, D. Celentano, and T. Tezduyar, “A moving lagrangian interface technique for flow computations over fixed meshes”, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 525-543.

[68]   M. Cruchaga, D. Celentano, and T. Tezduyar, “Computation of mould filling processes with a moving lagrangian interface technique”, Communications in Numerical Methods in Engineering, 18 (2002) 483-493.

[69]   M.A. Cruchaga, D.J. Celentano, and T.E. Tezduyar, “Moving-interface computations with the edge-tracked interface locator technique (ETILT)”, International Journal for Numerical Methods in Fluids, 47 (2005) 451-469.

[70]   J.E. Akin, T.E. Tezduyar, and M. Ungor, “Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT)”, Computers & Fluids, published online, December 2005.

[71]   M.A. Cruchaga, D.J. Celentano, and T.E. Tezduyar, “Collapse of a liquid column: Numerical simulation and experimental validation”, Computational Mechanics, published online, February 2006.

[72]   S. Mittal and T.E. Tezduyar, “Massively parallel finite element computation of incompressible flows involving fluid-body interactions”, Computer Methods in Applied Mechanics and Engineering, 112 (1994) 253-282.

[73]   A.A. Johnson and T.E. Tezduyar, “Simulation of multiple spheres falling in a liquid-filled tube”, Computer Methods in Applied Mechanics and Engineering, 134 (1996) 351-373.

[74]   A.A. Johnson and T.E. Tezduyar, “Parallel computation of incompressible flows with complex geometries”, International Journal for Numerical Methods in Fluids, 24 (1997) 1321-1340.

[75]   A.A. Johnson and T.E. Tezduyar, “3D simulation of fuid-particle interactions with the number of particles reaching 100”, Computer Methods in Applied Mechanics and Engineering, 145 (1997) 301-321.

[76]   A.A. Johnson and T.E. Tezduyar, “Advanced mesh generation and update methods for 3D flow simulations”, Computational Mechanics, 23 (1999) 130-143.

[77]   A. Johnson and T. Tezduyar, “Methods for 3D computation of fluid-object interactions in spatially-periodic flows”, Computer Methods in Applied Mechanics and Engineering, 190 (2001) 3201-3221.

[78]   T.E. Tezduyar, J. Liou, D.K. Ganjoo, and M. Behr, “Solution techniques for the vorticity-stream function formulation of two-dimensional incompressible flows”, International Journal for Numerical Methods in Fluids, 11 (1990) 515-539.

[79]   T.E. Tezduyar, S. Mittal, S.E. Ray, and R. Shih, “Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements”, Computer Methods in Applied Mechanics and Engineering, 95 (1992) 221-242.

[80]   J. Liou and T.E. Tezduyar, “Clustered element-by-element computations for fluid flow”, in H.D. Simon, editor, Parallel Computational Fluid Dynamics - Implementation and Results, Scientific and Engineering Computation Series, Chapter 9, 167-187, MIT Press, Cambridge, Massachusetts, 1992.

[81]   M.A. Behr, L.P. Franca, and T.E. Tezduyar, “Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 104 (1993) 31-48.

[82]   M. Behr, T.E. Tezduyar, and H. Higuchi, “Wake interference behind two flat plates normal to the flow: A finite-element study”, Theoretical and Computational Fluid Mechanics, 2 (1991) 223-250.

[83]   T.E. Tezduyar, R. Glowinski, and J. Liou, “Petrov-Galerkin methods on multiply-connected domains for the vorticity-stream function formulation of the incompressible Navier-Stokes equations”, International Journal for Numerical Methods in Fluids, 8 (1988) 1269-1290.

[84]   T.E. Tezduyar and J. Liou, “Grouped element-by-element iteration schemes for incompressible flow computations”, Computer Physcis Communications, 53 (1989) 441-453.

[85]   J. Liou and T.E. Tezduyar, “Iterative adaptive implicit-explicit methods for flow problems”, International Journal for Numerical Methods in Fluids, 11 (1990) 867-880.

[86]   T.E. Tezduyar, J. Liou, and D.K. Ganjoo, “Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations”, Computers & Structures, 35 (1990) 445-472.

[87]   T.E. Tezduyar and J. Liou, “Adaptive implicit-explicit finite element algorithms for fluid mechanics problems”, Computer Methods in Applied Mechanics and Engineering, 78 (1990) 165-179.

[88]   T.E. Tezduyar, S. Mittal, and R. Shih, “Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements”, Computer Methods in Applied Mechanics and Engineering, 87 (1991) 363-384.

[89]   T.E. Tezduyar and R. Shih, “Numerical experiments on downstream boundary of flow past cylinder”, Journal of Engineering Mechanics, 117 (1991) 854-871.

[90]   T.E. Tezduyar and J. Liou, “On the downstream boundary condition for the vorticity-stream function formulation of two-dimensional incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 85 (1991) 207-217.

[91]   M. Behr, J. Liou, R. Shih, and T.E. Tezduyar, “Vorticity-stream function formulation of unsteady incompressible flow past a cylinder: Sensitivity of the computed flow field to the location of the outflow boundary”, International Journal for Numerical Methods in Fluids, 12 (1991) 323-342.

[92]   M. Behr, A. Johnson, J. Kennedy, S. Mittal, and T. Tezduyar, “Computation of incompressible flows with implicit finite element implementations on the Connection Machine”, Computer Methods in Applied Mechanics and Engineering, 108 (1993) 99-118.

[93]   M. Behr, D. Hastreiter, S. Mittal, and T.E. Tezduyar, “Incompressible flow past a circular cylinder: Dependence of the computed flow field on the location of the lateral boundaries”, Computer Methods in Applied Mechanics and Engineering, 123 (1995) 309-316.

[94]   S. Mittal and T. Tezduyar, “A unified finite element formulation for compressible and incompressible flows using augumented conservation variables.”, Computer Methods in Applied Mechanics and Engineering, 161 (1998) 229-243.

[95]   T. Tezduyar and S. Sathe, “Stabilization parameters in SUPG and PSPG formulations”, Journal of Computational and Applied Mechanics, 4 (2003) 71-88.

[96]   J.E. Akin, T. Tezduyar, M. Ungor, and S. Mittal, “Stabilization parameters and smagorinsky turbulence model”, Journal of Applied Mechanics, 70 (2003) 2-9.

[97]   T.E. Tezduyar and J. Liou, “Computation of spatially periodic flows based on the vorticity-stream function formulation”, Computer Methods in Applied Mechanics and Engineering, 83 (1990) 121-142.

[98]   A.A. Johnson, T.E. Tezduyar, and J. Liou, “Numerical simulation of flows past periodic arrays of cylinders”, Computational Mechanics, 11 (1993) 371-383.

[99]   T.E. Tezduyar and T.J.R. Hughes, “Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations”, in Proceedings of AIAA 21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno, Nevada, (1983).

[100]   T.J.R Hughes and T.E. Tezduyar, “Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations”, Computer Methods in Applied Mechanics and Engineering, 45 (1984) 217-284.

[101]   G.J. Le Beau and T.E. Tezduyar, “Finite element computation of compressible flows with the SUPG formulation”, in Advances in Finite Element Analysis in Fluid Dynamics, FED-Vol.123, ASME, New York, (1991) 21-27.

[102]   G.J. Le Beau, S.E. Ray, S.K. Aliabadi, and T.E. Tezduyar, “SUPG finite element computation of compressible flows with the entropy and conservation variables formulations”, Computer Methods in Applied Mechanics and Engineering, 104 (1993) 397-422.

[103]   S. Mittal, S. Aliabadi, and T. Tezduyar, “Parallel computation of unsteady compressible flows with the EDICT”, Computational Mechanics, 23 (1999) 151-157.

[104]   T.E. Tezduyar, M. Senga, and D. Vicker, “Computation of inviscid supersonic flows around cylinders and spheres with the supg formulation and YZb shock-capturing”, Computational Mechanics, 38 (2006) 469-481.

[105]   S.K. Aliabadi and T.E. Tezduyar, “Space-time finite element computation of compressible flows involving moving boundaries and interfaces”, Computer Methods in Applied Mechanics and Engineering, 107 (1993) 209-223.

[106]   S.K. Aliabadi and T.E. Tezduyar, “Parallel fluid dynamics computations in aerospace applications”, International Journal for Numerical Methods in Fluids, 21 (1995) 783-805.

[107]   V. Kalro and T. Tezduyar, “Parallel 3D computation of unsteady flows around circular cylinders”, Parallel Computing, 23 (1997) 1235-1248.

[108]   Y. Osawa, V. Kalro, and T. Tezduyar, “Multi-domain parallel computation of wake flows”, Computer Methods in Applied Mechanics and Engineering, 174 (1999) 371-391.

[109]   Y. Osawa and T. Tezduyar, “A multi-domain method for 3D computation of wake flow behind a circular cylinder”, Computational Fluid Dynamics Journal, 8 (1999) 296-308.

[110]   Y. Osawa and T. Tezduyar, “3D simulation and visualization of unsteady wake flow behind a cylinder”, Journal of Visualization, 2 (1999) 127-134.

[111]   V. Kalro and T. Tezduyar, “3D computation of unsteady flow past a sphere with a parallel finite element method”, Computer Methods in Applied Mechanics and Engineering, 151 (1998) 267-276.

[112]   F. Rispoli, A. Corsini, and T.E. Tezduyar, “Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD)”, Computers & Fluids, published online, November 2005.

[113]   T.E. Tezduyar and Y.J. Park, “Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations”, Computer Methods in Applied Mechanics and Engineering, 59 (1986) 307-325.

[114]   T.E. Tezduyar and Y. Osawa, “Finite element stabilization parameters computed from element matrices and vectors”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 411-430.

[115]   T.E. Tezduyar, Y.J. Park, and H.A. Deans, “Finite element procedures for time-dependent convection-diffusion-reaction systems”, International Journal for Numerical Methods in Fluids, 7 (1987) 1013-1033.

[116]   A. Corsini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation”, Computational Mechanics, 38 (2006) 356-364.

[117]   T.E. Tezduyar, “Finite element formulation for the vorticity-stream function form of the incompressible Euler equations on multiply-connected domains”, Computer Methods in Applied Mechanics and Engineering, 73 (1989) 331-339.

[118]   T.E. Tezduyar and D.K. Ganjoo, “Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems”, Computer Methods in Applied Mechanics and Engineering, 59 (1986) 49-71.

[119]   T.E. Tezduyar, “Adaptive determination of the finite element stabilization parameters”, in Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001 (CD-ROM), Swansea, Wales, United Kingdom, (2001).

[120]   T.E. Tezduyar, “Calculation of the stabilization parameters in finite element formulations of flow problems”, in S.R. Idelsohn and V. Sonzogni, editors, Applications of Computational Mechanics in Structures and Fluids, 1-19, CIMNE, Barcelona, Spain, 2005.

[121]   T.E. Tezduyar, “Determination of the stabilization and shock-capturing parameters in supg formulation of compressible flows”, in Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004 (CD-ROM), Jyvaskyla, Finland, (2004).

[122]   T.E. Tezduyar and M. Senga, “Stabilization and shock-capturing parameters in SUPG formulation of compressible flows”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1621-1632.

[123]   J.E. Akin and T.E. Tezduyar, “Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements”, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 1909-1922.

[124]   L. Catabriga, A.L.G.A. Coutinho, and T.E. Tezduyar, “Compressible flow SUPG stabilization parameters computed from element-edge matrices”, Computational Fluid Dynamics Journal, 13 (2004) 450-459.

[125]   L. Catabriga, A.L.G.A. Coutinho, and T.E. Tezduyar, “Compressible flow SUPG parameters computed from element matrices”, Communications in Numerical Methods in Engineering, 21 (2005) 465-476.

[126]   L. Catabriga, A.L.G.A. Coutinho, and T.E. Tezduyar, “Compressible flow supg parameters computed from degree-of-freedom submatrices”, Computational Mechanics, 38 (2006) 334-343.

[127]   T.E. Tezduyar and M. Senga, “SUPG finite element computation of inviscid supersonic flows with YZb shock-capturing”, Computers & Fluids, published online, November 2005.

[128]   T.E. Tezduyar and S. Sathe, “Enhanced-discretization selective stabilization procedure (EDSSP)”, Computational Mechanics, 38 (2006) 456-468.

[129]   G.J. Le Beau and T.E. Tezduyar, “Finite element solution of flow problems with mixed-time integration”, Journal of Engineering Mechanics, 117 (1991) 1311-1330.

[130]   T.E. Tezduyar and S. Sathe, “Enhanced-discretization successive update method (EDSUM)”, International Journal for Numerical Methods in Fluids, 47 (2005) 633-654.

[131]   T.E. Tezduyar, M. Behr, S.K. Aliabadi, S. Mittal, and S.E. Ray, “A new mixed preconditioning method for finite element computations”, Computer Methods in Applied Mechanics and Engineering, 99 (1992) 27-42.

[132]   V. Kalro and T. Tezduyar, “Parallel iterative computational methods for 3D finite element flow simulations”, Computer Assisted Mechanics and Engineering Sciences, 5 (1998) 173-183.

[133]   T.E. Tezduyar and S. Sathe, “Enhanced-approximation linear solution technique (EALST)”, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 2033-2049.

[134]   T.E. Tezduyar and A. Sameh, “Parallel finite element computations in fluid mechanics”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1872-1884.

[135]   J.G. Kennedy, M. Behr, V. Kalro, and T.E. Tezduyar, “Implementation of implicit finite element methods for incompressible flows on the CM-5”, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 95-111.

[136]   T.E. Tezduyar and A. Sameh, “Parallel computing”, in L.P. Franca, T.E. Tezduyar, and A. Masud, editors, Finite Element Methods: 1970’s and Beyond, 336-351, CIMNE, Barcelona, Spain, 2004.