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Abstract: As a category of challenging flow problems, flows with moving boundaries and
interfaces, includes fluid–particle, fluid–object and fluid–structure interactions; free-surface
and two-fluid flows; and flows with moving mechanical components. To address the chal-
lenges involved in computation of this category of problems, we developed a number of
interface-tracking and interface-capturing techniques. Both classes of techniques are based
on stabilized formulations. The interface-tracking techniques are based on the Deforming-
Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation, where the mesh moves to
track the interface. The interface-capturing techniques, developed primarily for free-surface
and two-fluid interface flows, are formulated typically over non-moving meshes, using an
advection equation in addition to the flow equations. The advection equation governs the
evolution of an interface function that marks the location of the interface. We also describe
some of the methods we developed to increase the scope and accuracy of these two classes of
techniques.

Key words: Moving boundaries and interfaces, Interface-tracking, Interface-capturing, En-
hanced discretization and solution.

1 INTRODUCTION

Interface-tracking and interface-capturing techniques are widely used in computation of
flow problems with moving boundaries and interfaces. This category of problems includes
fluid–particle, fluid–object and fluid–structure interactions; free-surface and two-fluid flows;
and flows with moving mechanical components. These problems offer many computational
challenges. An interface-tracking technique requires meshes that “track” the interfaces and
are updated as the flow evolves. In an interface-capturing technique for two-fluid flows, the
computations are based on fixed spatial domains, where an interface function, marking the
location of the interface, is computed to “capture” the interface. The interface is captured
within the resolution of the finite element mesh covering the area where the interface is.
The interface-tracking and interface-capturing techniques we developed (see [1, 2, 3, 4]) are
based on stabilized formulations. The stabilized methods are the streamline-upwind/Petrov-
Galerkin (SUPG) [5, 6] and pressure-stabilizing/Petrov-Galerkin (PSPG) [1] formulations.
An earlier version of the pressure-stabilizing formulation for Stokes flows was reported in [7].
These stabilized formulations prevent numerical oscillations and other instabilities in solving
problems with high Reynolds and/or Mach numbers and shocks and strong boundary layers,
as well as when using equal-order interpolation functions for velocity and pressure and other
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unknowns. This class of stabilized formulations also substantially improve the convergence
rate in iterative solution of the large, coupled nonlinear equation system involved.

The Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation [1, 2] is
an interface-tracking technique. In this technique, the finite element formulation of a problem
is written over its space–time domain. As the spatial domain occupied by the fluid changes
in time, the mesh is updated. In general we do that by using an automatic mesh moving
method [8, 2] we developed. In this method, the motion of the nodes is governed by the
equations of elasticity. Full or partial remeshing (i.e., generating a new set of elements,
and sometimes also a new set of nodes) is carried out as needed. The stabilized space–
time formulations were used earlier by other researchers to solve problems with fixed spatial
domains (see for example [9]).

In computation of two-fluid flows, in some cases the interface might be too complex to
track while keeping the frequency of remeshing at an acceptable level. Not being able to
reduce the frequency of remeshing in 3D might introduce overwhelming mesh generation and
projection costs, making the computations with the interface-tracking technique no longer
feasible. In such cases, interface-capturing techniques, which do not normally require costly
mesh update steps, could be used with the understanding that the interface will not be
represented as accurately as we would have with an interface-tracking technique. Because
they do not require mesh update, the interface-capturing techniques are more flexible than
the interface-tracking techniques. However, for comparable levels of spatial discretization,
interface-capturing methods yield less accurate representation of the interface. These meth-
ods can be used as practical alternatives in carrying out the simulations when compromising
the accurate representation of the interfaces becomes less of a concern than facing major
difficulties in updating the mesh to track such interfaces.

The governing equations and core methods are described in Sections 2–4. Methods devel-
oped to increase the scope and accuracy of the core methods are described in Sections 5–10.

2 GOVERNING EQUATIONS

Let Ωt ⊂ IRnsd be the spatial flow domain with boundary Γt at time t ∈ (0, T ). The
subscript t indicates the time-dependence of the domain. The Navier–Stokes equations of
incompressible flows are written on Ωt and ∀t ∈ (0, T ) as

ρ

(

∂u

∂t
+ u · ∇∇∇u − f

)

−∇∇∇ · σσσ = 0, (1)

∇∇∇ · u = 0, (2)

where ρ, u and f are the density, velocity and the external force, respectively. The stress
tensor σσσ is defined as

σσσ(p,u) = −pI + 2µεεε(u), εεε(u) =
1

2

(

(∇∇∇u) + (∇∇∇u)T
)

. (3)

Here p is the pressure, I is the identity tensor, µ = ρν is the viscosity, ν is the kinematic
viscosity, and εεε(u) is the strain-rate tensor. The essential and natural boundary conditions
for Eq. (1) are represented as

u = g on (Γt)g, n · σσσ = h on (Γt)h, (4)

where (Γt)g and (Γt)h are complementary subsets of the boundary Γt, n is the unit normal
vector, and g and h are given functions. A divergence-free velocity field u0(x) is specified as
the initial condition.



If there are no moving boundaries or interfaces, the spatial domain does not need to change
in time, and the subscript t can be dropped from Ωt and Γt. This might be the case even
for flows with moving boundaries and interfaces, if the formulation is not based on defining
the spatial domain to be the part of the space occupied by the fluid(s). For example, fluid–
fluid interfaces can be modeled over a fixed spatial domain by assuming that the domain is
occupied by two immiscible fluids, A and B, with densities ρA and ρB and viscosities µA and
µB. A free-surface problem can be modeled as a special case where Fluid B is irrelevant and
assigned a sufficiently low density. An interface function φ serves as the marker identifying
Fluids A and B with the definition φ = {1 for Fluid A and 0 for Fluid B}. The interface
between the two fluids is approximated to be at φ = 0.5. In this context, ρ and µ are defined
as ρ = φρA + (1− φ)ρB and µ = φµA + (1− φ)µB. The evolution of φ, and consequently the
motion of the interface, is governed by a time-dependent advection equation, written on Ω
and ∀t ∈ (0, T ) as

∂φ

∂t
+ u · ∇∇∇φ = 0. (5)

In conjunction with this equation, φ is specified at inflow boundaries, and a function φ0(x)
is given as the initial condition.

3 STABILIZED SEMI-DISCRETE FORMULATION

Given Eqs. (1)–(2), we form some suitably-defined finite-dimensional trial solution and
test function spaces for velocity and pressure: Sh

u, Vh
u, Sh

p and Vh
p = Sh

p . The stabilized finite
element formulation of Eqs. (1)–(2) can be written as follows: find uh ∈ Sh

u and ph ∈ Sh
p such

that ∀wh ∈ Vh
u and qh ∈ Vh

p :

∫

Ω

wh · ρ

(

∂uh

∂t
+ uh · ∇∇∇uh − fh

)

dΩ +

∫

Ω

εεε(wh) : σσσ(ph,uh)dΩ −

∫

Γh

wh · hhdΓ

+

∫

Ω

qh∇∇∇ · uhdΩ +

nel
∑

e=1

∫

Ωe

1

ρ

[

τSUPGρu
h · ∇wh + τPSPG∇q

h
]

·
[

 L(ph,uh) − ρfh
]

dΩ

+

nel
∑

e=1

∫

Ωe

νLSIC∇∇∇ · whρ∇∇∇ · uhdΩ = 0, (6)

where

 L(qh,wh) = ρ

(

∂wh

∂t
+ uh · ∇∇∇wh

)

−∇∇∇ · σσσ(qh,wh). (7)

Here τSUPG, τPSPG and νLSIC are the SUPG, PSPG and LSIC (least-squares on incompressibility
constraint) stabilization parameters. For ways of calculating τSUPG, τPSPG and νLSIC, see [10,
11, 4].

4 DEFORMING-SPATIAL-DOMAIN/STABILIZED SPACE–TIME (DSD/SST)
FORMULATION

In the DSD/SST method [1], the finite element formulation of the governing equations is
written over a sequence of N space–time slabs Qn, where Qn is the slice of the space–time
domain between the time levels tn and tn+1. At each time step the integrations are performed
over Qn. The space–time finite element interpolation functions are continuous within a space–
time slab, but discontinuous from one space–time slab to another. The notation (·)−n and



(·)+
n denotes the function values at tn as approached from below and above. Each Qn is

decomposed into elements Qe
n, where e = 1, 2, . . . , (nel)n. The subscript n used with nel is for

the general case in which the number of space–time elements may change from one space–time
slab to another. The essential and natural boundary conditions are enforced over (Pn)g and
(Pn)h, the complementary subsets of the lateral boundary of the space–time slab. The finite
element trial function spaces (Sh

u)n for velocity and (Sh
p )n for pressure, and the test function

spaces (Vh
u)n and (Vh

p )n = (Sh
p )n are defined by using, over Qn, first-order polynomials in

both space and time. The DSD/SST formulation is written as follows: given (uh)−n , find
uh ∈ (Sh

u)n and ph ∈ (Sh
p )n such that ∀wh ∈ (Vh

u)n and qh ∈ (Vh
p )n:

∫

Qn

wh · ρ

(

∂uh

∂t
+ uh · ∇∇∇uh − fh

)

dQ+

∫

Qn

εεε(wh) : σσσ(ph,uh)dQ

−

∫

(Pn)h

wh · hhdP +

∫

Qn

qh∇∇∇ · uhdQ+

∫

Ωn

(wh)+
n · ρ

(

(uh)+
n − (uh)−n

)

dΩ

+

(nel)n
∑

e=1

∫

Qe
n

1

ρ

[

τSUPGρ

(

∂wh

∂t
+ uh · ∇wh

)

+ τPSPG∇q
h

]

·
[

 L(ph,uh) − ρfh
]

dQ

+

nel
∑

e=1

∫

Qe
n

νLSIC∇∇∇ · whρ∇∇∇ · uhdQ = 0. (8)

This formulation is applied to all space–time slabs Q0, Q1, Q2, . . . , QN−1, starting with (uh)−0
= u0. For an earlier, detailed reference on the formulation see [1].

How the mesh is updated as the spatial domain occupied by the fluid changes in time
depends on several factors. These factors include the complexity of the interface and overall
geometry, how unsteady the interface is, and how the starting mesh was generated. Detailed
descriptions of various mesh update techniques we developed can be found in [2, 3, 4]. These
include an automatic mesh moving method, techniques to reduce the frequency of remeshing,
and a mesh update method for handling solid objects (or surfaces) in fast linear or rotational
relative motion. Also included are the techniques for handling the structured layers of ele-
ments generated around solid or deformable solid objects (to fully control the mesh resolution
near solid objects and have more accurate representation of the boundary layers).

5 ENHANCED-DISCRETIZATION INTERFACE-CAPTURING TECHNIQUE
(EDICT)

In the EDICT [12, 2], we start with the basic approach of an interface-capturing technique
such as the volume of fluid (VOF) method [13]. The Navier–Stokes equations are solved over a
non-moving mesh together with the time-dependent advection equation governing the evolu-
tion of the interface function φ. The trial function spaces corresponding to velocity, pressure,
and interface function are denoted, respectively, by (Sh

u)n, (Sh
p )n, and (Sh

φ)n. The weighting
function spaces corresponding to the momentum equation, incompressibility constraint, and
time-dependent advection equation are denoted by (Vh

u)n, (Vh
p )n (= (Sh

p )n), and (Vh
φ)n. The

subscript n in this case allows us to use different spatial discretizations corresponding to
different time levels.

The stabilized formulations of the flow and advection equations can be written as follows:
given uh

n and φh
n, find uh

n+1 ∈ (Sh
u)n+1, ph

n+1 ∈ (Sh
p )n+1, and φh

n+1 ∈ (Sh
φ)n+1, such that,

∀wh
n+1 ∈ (Vh

u)n+1, ∀q
h
n+1 ∈ (Vh

p )n+1, and ∀ψh
n+1 ∈ (Vh

φ)n+1:



∫

Ω

wh
n+1 · ρ

(

∂uh

∂t
+ uh · ∇∇∇uh − fh

)

dΩ +

∫

Ω

εεε(wh
n+1) : σσσ(ph,uh)dΩ

−

∫

Γh

wh
n+1 · h

hdΓ +

∫

Ω

qh
n+1∇∇∇ · uhdΩ

+

nel
∑

e=1

∫

Ωe

1

ρ

[

τSUPGρu
h · ∇wh

n+1 + τPSPG∇q
h
n+1

]

·
[

 L(ph,uh) − ρfh
]

dΩ

+

nel
∑

e=1

∫

Ωe

νLSIC∇∇∇ · wh
n+1ρ∇∇∇ · uhdΩ = 0, (9)

∫

Ω

ψh
n+1

(

∂φh

∂t
+ uh ·∇∇∇φh

)

dΩ

+

nel
∑

e=1

∫

Ωe

τφu
h ·∇∇∇ψh

n+1

(

∂φh

∂t
+ uh ·∇∇∇φh

)

dΩ = 0. (10)

Here τφ is calculated by applying the definition of τSUPG to Eq. (10).
To increase the accuracy, we use function spaces corresponding to enhanced discretization

at and near the interface. A subset of the elements in the base mesh, Mesh-1, are identified
as those at and near the interface. A more refined mesh, Mesh-2, is constructed by patching
together second-level meshes generated over each element in this subset. The interpolation
functions for velocity and pressure will all have two components each: one coming from Mesh-
1 and the second one coming from Mesh-2. To further increase the accuracy, we construct a
third-level mesh, Mesh-3, for the interface function only. The construction of Mesh-3 from
Mesh-2 is very similar to the construction of Mesh-2 from Mesh-1. The interpolation functions
for the interface function will have three components, each coming from one of these three
meshes. We re-define the subsets over which we build Mesh-2 and Mesh-3 not every time
step but with sufficient frequency to keep the interface enveloped in. We need to avoid this
envelope being too wide or too narrow.

6 MIXED INTERFACE-TRACKING/INTERFACE-CAPTURING TECHNIQUE
(MITICT)

In computation of flow problems with fluid–solid interfaces, an interface-tracking tech-
nique, where the fluid mesh moves to track the interface, would allow us to have full control
of the resolution of the fluid mesh in the boundary layers. With an interface-capturing
technique (or an interface locator technique in the more general case), on the other hand,
independent of how accurately the interface is located, the resolution of the fluid mesh in the
boundary layer will be limited by the resolution of the fluid mesh where the interface is. In
computation of flow problems with fluid–fluid interfaces where the interface is too complex or
unsteady to track while keeping the remeshing frequency under control, interface-capturing
techniques, with enhanced-discretization as needed, could be used as more flexible alterna-
tives. Sometimes we may need to solve flow problems with both fluid–solid interfaces and
complex or unsteady fluid–fluid interfaces.

The MITICT [2, 3, 4] was introduced primarily for fluid–object interactions with multiple
fluids. The class of applications we were targeting were fluid–particle–gas interactions and



free-surface flow of fluid–particle mixtures. However, the MITICT can be applied to a larger
class of problems, where it is more effective to use an interface-tracking technique to track
the solid–fluid interfaces and an interface-capturing technique to capture the fluid–fluid in-
terfaces. The interface-tracking technique is the DSD/SST formulation (but could as well be
the Arbitrary Lagrangian–Eulerian method or other moving-mesh methods). The interface-
capturing technique rides on this, and is based on solving over a moving mesh, in addition
to the Navier–Stokes equations, the advection equation governing the time-evolution of the
interface function. The additional DSD/SST formulation is for the advection equation:

∫

Qn

ψh

(

∂φh

∂t
+ uh ·∇∇∇φh

)

dQ+

∫

Ωn

(ψh)+
n

(

(φh)+
n − (φh)−n

)

dΩ

+

(nel)n
∑

e=1

∫

Qe
n

τφ

(

∂ψh

∂t
+ uh ·∇∇∇ψh

) (

∂φh

∂t
+ uh ·∇∇∇φh

)

dQ = 0. (11)

This equation, together with Eq. (8), constitute a mixed interface-tracking/interface-capturing
technique that would track the solid–fluid interfaces and capture the fluid–fluid interfaces that
would be too complex or unsteady to track with a moving mesh. The interface-capturing part
of MITICT can be upgraded to the EDICT formulation for more accurate representation of
the interfaces captured.

The MITICT can also be used for computation of fluid–structure interactions with multiple
fluids or for flows with mechanical components moving in a mixture of two fluids. In more
general cases, the MITICT can be used for classes of problems that involve both interfaces
that can be accurately tracked with a moving-mesh method and interfaces that are too
complex or unsteady to be tracked and therefore require an interface-capturing technique.

We propose the MITICT-L as a version of the MITICT with limited mesh moving. In the
MITICT-L, mesh moving would be limited to sufficiently wide regions of the computational
domain enveloping the fluid–solid interfaces. These regions would be wide enough so that
we can keep the mesh deformation, frequency of remeshing, and frequency of re-defining the
mesh-moving regions at reasonable levels. By not moving the mesh outside of these regions,
we would significantly reduce the computational cost for solving the mesh-moving equations.
By using only semi-discrete formulations outside of the mesh-moving regions, we would also
avoid the computational cost associated with using space–time formulations. Appropriate
interface (matching) conditions would be used where two differently treated regions meet.

7 FLUID–SOLID INTERFACE LOCATOR TECHNIQUE (FSILT)

If the Reynolds number is not high enough to be concerned about the mesh resolution
near the solid surfaces, then there is no strong reason for moving the mesh for the purpose of
controlling the mesh resolution where those interfaces are. Depending on the nature of the
problem, such flow simulations can still be carried out with the MITICT or MITICT-L. Not
having high-resolution meshes near the fluid–solid interfaces would reduce the mesh moving
burden in terms of the number of equations to be solved and frequency of remeshing. As an
alternative to this approach, we propose the FSILT. In the FSILT, we propose to carry out
the fluid–solid interface computations over non-moving meshes. We propose to accomplish
this by modifying the left-hand-side of Eq. (6) as follows:

(LHS of Eq. (6)) −

∫

ΓFS

wh · Jh
FS dΓ = 0, (12)



where ΓFS is the fluid–solid interface, which is discretized by the structural interface mesh, and
Jh

FS represents the interface stresses acting on the fluid at the fluid–solid interface. This would
require projection between the non-moving fluid mesh and the moving structural interface
mesh. The structural motion would be governed by the applicable structural mechanics
equations (examples: rigid- or deformable-body mechanics equations, and membrane or shell
equations), taking into account the interface stresses, −Jh

FS, acting on the structure. In
conjunction with the additional unknown Jh

FS, we add on the following constraint equation:
∫

ΓFS

Kh
FS ·

(

uh
F − uh

S

)

dΓ = 0, (13)

where uh
F is the fluid velocity evaluated on ΓFS, uh

S is the structural displacement rate, and
Kh

FS is the test function (variation of Jh
FS). We propose two possible ways to approach this

constraint problem. In the penalty formulation approach, we write

Jh
FS = −λFS

(

uh
F − uh

S

)

, (14)

where λFS is a penalty parameter. In the stabilized formulation approach, we modify Eq. (13)
as follows:

∫

ΓFS

Kh
FS ·

(

uh
F − uh

S

)

dΓ

+

∫

ΓFS

τFS

1

ρMLFS
Kh

FS ·
[

Jh
FS −

(

nh
A · σσσh

A + nh
B · σσσh

B

)]

dΓ = 0, (15)

where we assume that the structure is (nsd − 1)-dimensional (e.g. membrane or shell) and
that we have two different fluids, Fluid A and Fluid B, on each side of the structure. Here ρM

= max(ρA, ρB), LFS is a global length scale for the fluid–solid interface, and the stabilization

parameter is defined as τFS =
(

(τFS1)
−r + (τFS3)

−r)−1/r
(typically r = 2), with

τFS1 =
hFS1

2 ucha
, τFS3 =

(hFS3)
2

4 (µM/ρM)
, (16)

where hFS1 and hFS3 are appropriate local length scales, and µM = max(µA, µB). For other
stabilized formulations with Lagrange multipliers on the boundary see [14, 15].

We propose to use the underlying concepts of the FSILT also to take into account the sur-
face tension effects in computation of free-surface and two-fluid interface flows with interface-
capturing techniques. We propose to accomplish this by adopting Eq. (12) for use in the
context of Eqs. (9) and (10) in their non-EDICT form. For that, the left-hand-side of Eq. (9)
would be modified as follows:

(LHS of Eq. (9)) −

∫

ΓST

wh · Jh
ST dΓ = 0, (17)

where ΓST is the two-fluid interface (or free surface), discretized by a separate (nsd − 1)-
dimensional mesh, and Jh

ST represents the surface tension forces acting on the fluid at the
interface. This would require projection between the non-moving fluid mesh and the moving
interface mesh. The interface motion would continue to be governed by Eq. (10).

In fluid–structure interactions where the structure is (nsd − 1)-dimensional, and in free-
surface and two-fluid interface flows with surface tension, we need to allow the fluid pressure
be discontinuous across the interface. As a rudimentary fix, in the elements crossed by the



interface, we propose to interpolate the pressure at each side of the interface by using nodal
values only from that side. For each side, we first calculate in some way the “extended”
values for the nodes at the other side. We then interpolate the pressure by using the real
nodal values from that side and the “extended” nodal values from the other side.

We propose the FSILT-ED (FSILT - Extended Domain) as a version of the FSILT where
the pressure interpolation is improved by enhancing the finite element function spaces around
the interface. In the FSILT-ED, the domain for the fluid at one side of the interface is
extended to the other side. As density and viscosity, in the extended domain for Fluid A,
we use ερA and εµA, and in extended domain for Fluid B, ερB and εµB. Here ε is a very
small parameter that would make the density and viscosity values negligible and the fluid
dynamics practically irrelevant. How much the extended domain goes beyond the interface
would depend on how frequently we would like to re-define the extended domain. For elements
crossed by the interface, the elements are assembled once for Fluid A and and once for Fluid
B. We do the same for elements that are not crossed by the interface but are in both a real
and an extended domain. In a fluid–structure interaction problem, if we have a single fluid,
then we use the terminology Side A and Side B instead of Fluid A and Fluid B, but the
approach remains the same.

With the enhanced functions spaces, we split Eq. (12) into two equations. One equation
would be for Fluid A (or Side A), where Jh

FS is replaced with (Jh
FS)A, and the other equation

for Fluid B (or Side B), where Jh
FS is replaced with (Jh

FS)B. The interface stresses acting on
the fluid at each side would then be added to calculate the total interface stresses: Jh

FS =
(Jh

FS)A +(Jh
FS)B. Similarly, Eqs. (13), (14) and (15) would be split into two sets of equations.

In the set for Fluid A, Kh
FS, uh

F and Jh
FS would be replaced with (Kh

FS)A, (uh
F )A and (Jh

FS)A,
and in the set for Fluid B, with (Kh

FS)B, (uh
F )B and (Jh

FS)B. In the version of Eq. (15) for
Fluid A, the subscript B would signify the extended domain part of Fluid A. In the version
for Fluid B, the subscript A would signify the extended domain part of Fluid B.

We propose the FSILT-EDP (FSILT - Extended Domain for Pressure) as a version of the
FSILT where the pressure interpolation is improved by enhancing only the pressure function
space around the interface. In this version Eqs. (12), (13), (14) and (15) would not be split into
two sets of equations. For Eqs. (12) and (15), for elements crossed by the interface, at each
side of the interface we interpolate the pressure by using the real nodal values from that side
and the “extended” nodal values from the other side. For the part of Eq. (12) corresponding
to the incompressibility constraint, for elements crossed by the interface, integration over
each side of the interface generates what we assemble to the equations associated with the
fluid at that side. For an element that is not crossed by the interface but is in both a real and
an extended domain for pressure, integration over the extended domain, after multiplication
by ε, generates what we assemble to the equations associated with the fluid that is not present
in that element. For such an element, over the extended domain the pressure is interpolated
by using the nodal values associated with the fluid that is not present in that element.

We also propose to use the underlying concepts of the FSILT-EDP to take into account
the surface tension effects in computation of free-surface and two-fluid interface flows with
interface-capturing techniques. The underlying concepts would be used in the context of
Eq. (17) and Eq. (10) in its non-EDICT form.

8 EDGE-TRACKED INTERFACE LOCATOR TECHNIQUE (ETILT)

The ETILT [2, 3, 4] was introduced to have an interface-capturing technique with better
volume conservation properties and sharper representation of the interfaces. To this end,



we first define a second finite-dimensional representation of the interface function, namely
φhe. The added superscript “e” indicates that this is an edge-based representation. With
φhe, interfaces are represented as collection of positions along element edges crossed by the
interfaces (i.e., along the “interface edges”). Nodes belong to “chunks” of Fluid A or Fluid
B. An edge either belongs to a chunk of Fluid A or Fluid B or is an interface edge. Each
element is either filled fully by a chunk of Fluid A or Fluid B, or is shared by a chunk of
Fluid A and a chunk of Fluid B. If an element is shared like that, the shares are determined
by the position of the interface along the edges of that element. The base finite element
formulation is essentially the one described by Eqs. (9) and (10). Although the ETILT can
be used in combination with the EDICT, we assume that we are working here with the plain,
non-EDICT versions of Eqs. (9) and (10).

At each time step, given uh
n and φhe

n , we determine uh
n+1, ph

n+1, and φhe
n+1. The definitions

of ρ and µ are modified to use the edge-based representation of the interface function: ρh =
φheρA + (1 − φhe)ρB, µh = φheµA + (1 − φhe)µB. In marching from time level n to n + 1, we
first calculate φh

n from φhe
n by a least-squares projection:

∫

Ω

ψh
(

φh
n − φhe

n

)

dΩ = 0. (18)

To calculate φh
n+1, we use Eq. (10). From φh

n+1, we calculate φhe
n+1 by a combination of a

least-squares projection:

∫

Ω

(ψhe
n+1)P

(

(φhe
n+1)P − φh

n+1

)

dΩ = 0, (19)

and corrections to enforce volume conservation for all chunks of Fluid A and Fluid B, taking
into account the mergers between the chunks and the split of chunks. This volume conserva-
tion condition can symbolically be written as V OL (φhe

n+1) = V OL (φhe
n ). Here the subscript

P is used for representing the intermediate values following the projection, but prior to the
corrections for volume conservation. It can be shown that the projection given by Eq. (19)
can be interpreted as locating the interface along the interface edges at positions where φh

n+1

= 1/2.
As an alternative way for computing φh

n from φhe
n , we propose to solve the equation

∫

ΩINT

ψh
n

(

φh
n − φhe

n

)

dΩ +

nie
∑

k=1

ψh
n(xk) λPEN

(

φh
n(xk) − 1/2

)

= 0, (20)

where nie is the number of interface edges, xk is the coordinate of the interface location along
the kth interface edge, λPEN is a penalty parameter, and ΩINT is the solution domain. This
domain is the union of all the elements containing at least one node where the value of φh

n

is unknown. We can assume φh
n to be unknown only at the nodes of the interface edges,

with known values φh
n = 1 (for Fluid A) and φh

n = 0 (for Fluid B) at all other nodes. We
can also augment the number of nodes where φh

n is unknown and thus enlarge the solution
domain. This can be done all the way to the point where ΩINT = Ω. As another alternative,
in Eq. (20) we can replace the least-squares projection term with a slope-minimization term:

∫

ΩINT

∇∇∇ψh
n · ∇∇∇φh

n dΩ +

nie
∑

k=1

ψh
n(xk) λPEN

(

φh
n(xk) − 1/2

)

= 0. (21)



A 1D version of the way of computing φh
n from φhe

n can be formulated by minimizing (φh
n−φ

he
n )2

along “chains” of interface edges:

∫

SINT

ψh
n

(

φh
n − φhe

n

)

ds +

nie
∑

k=1

ψh
n(xk) λPEN

(

φh
n(xk) − 1/2

)

= 0, (22)

where SINT is the collection of all chains of interface edges, and s is the integration coordinate
along the interface edges. This is, of course, a simpler formulation, and much of the equations
for the unknown nodal values will be uncoupled.

These projections and volume corrections are embedded in the iterative solution technique,
and are carried out at each iteration. The iterative solution technique, which is based on
the Newton–Raphson method, addresses both the nonlinear and coupled nature of the set of
equations that need to be solved at each time step. More explanation of how the projections
and volume corrections would be handled at a nonlinear iteration step can be found in [2, 3,
4].

9 ITERATIVE SOLUTION METHODS

The finite element formulations reviewed in the earlier sections fall into two categories: a
space–time formulation with moving meshes or a semi-discrete formulation with non-moving
meshes. Full discretizations of these formulations lead to coupled, nonlinear equation systems
that need to be solved at every time step of the simulation. In a form that is partitioned
with respect to the models represented, these nonlinear equations can be written as follows:

N1 (d1,d2) = F1,

N2 (d1,d2) = F2, (23)

where d1 and d2 are the vectors of nodal unknowns corresponding to unknown functions u1

and u2, respectively. For example, in the context of a coupled fluid–structure interaction
problem, u1 and u2 might be representing the fluid and structure unknowns, respectively. In
solving these equations with a Newton–Raphson sequence, at every step of the sequence we
solve the following linear equation system:

A11x1 + A12x2 = b1,

A21x1 + A22x2 = b2, (24)

where b1 and b2 are the residuals of the nonlinear equation system, x1 and x2 represent the
correction increments computed for d1 and d2, and

Aβγ =
∂Nβ

∂dγ
. (25)

In fluid–structure interactions, computation of the coupling matrices A12 and A21 might
pose a significant challenge. A mixed analytical/numerical element-vector-based (AEVB/NEVB)
computation technique was introduced to address this challenge, and the description of this
technique can be found in [2, 4]. An overview of the more general iterative solution techniques
used in our computations can also be found in [2, 4]. The overview includes preconditioning
techniques used in solving the linear equation system given by Eq. (24) and the techniques
for computation of the residuals of the linear equation system.

In fluid–structure interaction computations where the structure is light, in the absence
of taking into account the coupling blocks A12 and A21, we propose a short cut approach



for improving the convergence of the coupling iterations. In this approach, to reduce “over-
correcting” (i.e. “over-incrementing”) the structural displacements during the coupling it-
erations, we artificially increase the structural mass contribution to the matrix block corre-
sponding to the structural mechanics equations and unknowns. With the understanding that
subscript 2 denotes the structure, this would be equivalent to artificially increasing the mass
matrix contribution to A22. This is achieved without altering b1 or b2 (i.e. F1 −N1 (d1,d2)
or F2 − N2 (d1,d2)), and therefore when the coupling iterations converge, they converge to
the solution of the problem with the correct structural mass.

In fluid–structure interaction computations with light and thin structures (such as mem-
branes), it might be desirable to eliminate the higher spatial modes of the structural re-
sponse normal to the membrane. We propose to accomplish that by adding to the finite
element formulation of the structural mechanics problem a “Directional-Inertia Stabilizing
Mass (DISM)” term, which we define as

SDISM =

nel
∑

e=1

∫

(Ωs)e

w · (η ρs nn) ·

(

d2yh

dt2

)

dΩs , (26)

where Ωs is the membrane domain, yh is the displacement, ρs is the material density, n is the
unit vector normal to the membrane, and η is a non-dimensional measure of the curvature

in
(

d2yh

dt2

)

. As a possible alternative to the DISM term, we propose a “Directional-Damping

Stabilization (DDS)” term defined as

SDDS =

nel
∑

e=1

∫

(Ωs)e

w ·
(

ξh ωh
int ρ

s nn
)

·

(

dyh

dt

)

dΩs , (27)

where ωh
int is an intrinsic frequency and ξh is a non-dimensional measure of the curvature

in
(

dyh

dt

)

. While we view these admittedly ad hoc techniques as short cut stabilization

approaches, we also propose the “Fluid–Structure Interactions Mixed Structural Modeling
(FSIMSM)” as a more rigorous approach. In FSIMSM, a mixture of different models (such
as membrane, shell and continuum elements) would be used for representing the structure,
depending on the nature of its deformation modes. For example, parachute computations
would normally be based on using membrane and cable elements to model the parachute
structure. In the FSIMSM approach, in regions of the structure where wrinkling or other
instabilities are experienced or expected, the model would convert to one that is based on
using shell and beam elements. This would bring bending rigidity to where it is needed.
Appropriate interface (matching) conditions would be used where two different models meet.
The FSIMSM can be implemented in a static or dynamic way. In the static way, the model to
be used for each structural element would be determined based on what we know about the
FSI problem in advance. In the dynamic way, regions experiencing instabilities during the
computations would convert to models based on shell and beam elements. Regional models
would not be re-defined every time step. They would be re-defined frequently enough to have
a safe coverage of the regions experiencing instabilities.

10 THE ENHANCED-DISCRETIZATION SUCCESSIVE UPDATE METHOD
(EDSUM)

In this section, we describe a multi-level iteration method for computation of flow behavior
at small scales. The EDSUM [2, 16, 4] is based on the EDICT. Although it might be possible



to identify zones where the enhanced discretization could be limited to, we need to think
about and develop methods required for cases where the enhanced discretization is needed
everywhere in the problem domain to accurately compute flows at smaller scales. In that case
the enhanced discretization would be more wide-spread than before, and possibly required
for the entire domain. Therefore an efficient solution approach would be needed to solve, at
every time step, a very large, coupled nonlinear equation system generated by the multi-level
discretization approach.

Such large, coupled nonlinear equation systems involve four classes of nodes. Class-1
consists of all the Mesh-1 nodes. These nodes are connected to each other through the Mesh-
1 elements. Class-2E consists of the Mesh-2 edge nodes (but excluding those coinciding
with the Mesh-1 nodes). The edge nodes associated with different edges are not connected
(except those at each side of an edge, but we could possibly neglect that a side node might
be connected to the side nodes of the adjacent edges). Nodes within an edge are connected
through Mesh-2 elements. Class-2F contains the Mesh-2 face nodes (but excluding those on
the edges). The face nodes associated with different faces are not connected (except those
at sides of a face, but we could possibly neglect that those side nodes might be connected
to the side nodes of the adjacent face). Nodes within a face are connected through Mesh-2
elements. Class-2I nodes are the Mesh-2 interior nodes. The interior nodes associated with
different clusters of Mesh-2 elements are not connected. Nodes within a cluster are connected
through Mesh-2 elements.

Based on this multi-level decomposition concept, the nonlinear equation system we gen-
erate can be re-written as follows:

N1 (d1, d2E , d2F , d2I) = F1,

N2E (d1, d2E , d2F , d2I) = F2E ,

N2F (d1, d2E , d2F , d2I) = F2F ,

N2I (d1, d2E , d2F , d2I) = F2I . (28)

This equation system would be solved with an approximate Newton–Raphson method. At
each nonlinear iteration step, we would successively update the solution vectors corresponding
to each class. While updating each class, we would use the most recent values of the solution
vectors in calculating the vectors N1, N2E , N2F , and N2I and their derivatives with respect
to the solution vectors. We would start with updating the Class-1 nodes, then update the
Class-2E, Class-2F, and Class-2I nodes, respectively. The process, for an iteration step taking
us from iterative solution i to i+ 1, is shown below, where each class of equations are solved
in the order they are written.

∂N1

∂d1

∣

∣

∣

∣

(di

1
, di

2E
, di

2F
, di

2I)

(

∆di
1

)
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(

di
1, di

2E , di
2F , di

2I

)

,

∂N2E

∂d2E

∣

∣

∣

∣

(di+1
1

, di

2E
, di

2F
, di

2I)

(

∆di
2E

)
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(

di+1
1 , di

2E , di
2F , di

2I

)

,

∂N2F

∂d2F

∣

∣

∣

∣

(di+1
1

, d
i+1

2E
, di

2F
, di

2I)

(

∆di
2F

)

= F2F − N2F

(

di+1
1 , di+1

2E , di
2F , di

2I

)

,

∂N2I

∂d2I

∣

∣

∣

∣
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1

, d
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2E
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2F
, di

2I)

(

∆di
2I

)

= F2I − N2I

(

di+1
1 , di+1

2E , di+1
2F , di

2I

)

. (29)



This sequence would be repeated as many times as needed, and, as an option, we could
alternate between this sequence and its reverse sequence (see [16, 4])

Updating the solution vector corresponding to each class would also require solution of
a large equation system. These equations systems would each be solved iteratively, with
an effective preconditioner, a reliable search technique, and parallel implementation. It is
important to note that the bulk of the computational cost would be for Class-1 and Class-2I.
While the Class-1 nodes would be partitioned to different processors of the parallel computer,
for the remaining classes, nodes in each edge, face or interior cluster would be assigned to the
same processor. Therefore, solution of each edge, face or interior cluster would be local. If
the size of each interior cluster becomes too large, then nodes for a given cluster can also be
distributed across different processors, or a third level of mesh refinement can be introduced
to make the enhanced discretization a tri-level kind.

A variation of the EDSUM could be used for the iterative solution of the linear equation
system that needs to be solved at every step of a (full) Newton–Raphson method applied to
Eq. (28). To describe this variation, we first write the linear equation system that needs to
be solved:

A11x1 + A12Ex2E + A12Fx2F + A12Ix2I = b1,

A2E1x1 + A2E2Ex2E + A2E2Fx2F + A2E2Ix2I = b2E ,

A2F1x1 + A2F2Ex2E + A2F2Fx2F + A2F2Ix2I = b2F ,

A2I1x1 + A2I2Ex2E + A2I2Fx2F + A2I2Ix2I = b2I , (30)

where

Aβγ =
∂Nβ

∂dγ
, (31)

with β, γ = 1, 2E, 2F , 2I. Then, for the iterative solution of Eq. (30), in conjunction with
GMRES search [17], we propose that the following three preconditioners are used in sequence
during the inner iterations:

PL =









A11 0 0 0
0 DIAG (A2E2E) 0 0
0 0 DIAG (A2F2F ) 0
0 0 0 DIAG (A2I2I)









, (32)

PSETOI =









DIAG (A11) 0 0 0
0 A2E2E 0 0
0 A2F2E A2F2F 0
0 A2I2E A2I2F A2I2I









, (33)

PSITOE =









DIAG (A11) 0 0 0
0 A2E2E A2E2F A2E2I

0 0 A2F2F A2F2I

0 0 0 A2I2I









. (34)

As possible sequences, we propose (PL, PSETOI, PSITOE, . . . , PL, PSETOI, PSITOE), as well
as (PL, PSETOI, . . . , PL, PSETOI) and (PL, PSITOE, . . . , PL, PSITOE). As a somewhat
downgraded version of PL, we can use a preconditioner that is equivalent to not updating



x2E , x2F , and x2I , instead of updating them by using DIAG (A2E2E), DIAG (A2F2F ), and
DIAG (A2I2I). Similarly, as downgraded versions of PSETOI and PSITOE, we can use precon-
ditioners that are equivalent to not updating x1, instead of updating it by using DIAG (A11).
For additional preconditioners see [16, 4].

To differentiate between the two variations of the EDSUM we described in this section, we
call the nonlinear version, described by Eq. (29), EDSUM-N, and the linear version, described
by Eqs. (30) – (34), EDSUM-L.

The EDSUM provides a natural framework for resourceful and selective application of
stabilized formulations to multi-scale computations and subgrid-scale modeling. Along these
lines we propose the “Enhanced-Discretization Selective Stabilization Procedure (EDSSP)”.
In the EDSSP, finite element equations generating different blocks of the nonlinear equation
system given by Eq. (28) would be based on different stabilized formulations. Level-1 equa-
tions (generating the first block) would be based on a stabilized formulation more suitable
for flow behavior at larger scales, and the Level-2 equations (generating the second, third
and fourth blocks) would be based on a stabilized formulation more suitable for flow be-
havior at smaller scales. As a special version of the EDSSP, we propose to use with the
Level-1 equations only the SUPG and PSPG stabilizations, and with the Level-2 equations
use additionally the DCDD stabilization [11, 4].

We propose the EDSUM-B as an approximate version of the EDSUM. In the EDSUM-B,
we propose to solve the Level-2 equations less frequently than the Level-1 equations. For
example, instead of performing the same number of iterations to solve all four blocks of
Eq. (28), we can perform one iteration for the Level-2 blocks for every two iterations we
perform for the Level-1 block. This would mean that the small-scale data used in solving the
large-scale equations is updated at every other iteration. As another example of EDSUM-B,
we can use for the Level-2 equations a more dissipative time-integration algorithm and a
time-step size that is twice the time-step size we use for the Level-1 equations. This would
mean that the small-scale data used in solving the large-scale equations is updated at every
other time step. Although the EDSUM-B is a more approximate technique compared to the
EDSUM, it will still be superior in accuracy compared to carrying out the computation with
the Level-1 discretization alone.

11 EXAMPLES OF FLOW SIMULATIONS AND TEST COMPUTATIONS

11.1 Aerodynamic interactions of two parachutes

Two US Army T–10 parachutes, at descent speeds of 22 ft/s, are undergoing aerodynamic
interactions as one enters the wake of the other one. The reference frame is attached to
the lower parachute, which is assumed to be rigid. The upper parachute is allowed to move
relative to the lower one and deform. The DSD/SST formulation is used with the automatic

mesh moving method. In this test computation the ∂wh

∂t
term in Eq. (8) has been dropped.

The motion and deformation of the upper parachute is governed by the membrane and cable
equations, which are solved together with the fluid mechanics equations. Figure 1 shows,
during time period 0.0 to 3.5 s, the vorticity field and how the upper parachute moves
closer to the lower one and deforms. For more on this computation and the fluid–structure
interaction technique used, see [18, 19].

11.2 Parachute soft-landing dynamics

Soft landing with the aid of a retraction device reduces the landing impact for payloads de-
livered with parachutes. In this example, for a T–10 parachute, a pneumatic muscle actuator



0.00 s 1.75 s 3.50 s

Figure 1: Aerodynamic interactions of two parachutes. Vorticity during time period 0.0 to 3.5 s. For more
on this computation see [18, 19].

(PMA) placed between the suspension lines and the payload serves at the retraction device
by causing rapid contraction just before landing. The DSD/SST formulation is used with

the automatic mesh moving method. In this test computation the ∂wh

∂t
term in Eq. (8) has

been dropped. The motion and deformation of the parachute is governed by the membrane
and cable equations, which are solved together with the fluid mechanics equations. Figure 2
shows the payload trajectory. For more on soft-landing simulations and the methods used,

Figure 2: Parachute soft-landing dynamics. Payload trajectory for soft landing of a T–10 parachute during
and immediately after retraction. The straight line is the trajectory that the payload would have had without
the retraction. The parachutes displayed illustrate the deformations of the canopy and the cables. The length
scale used in displaying the parachutes is not the same as it is for the trajectory graph. For more on this
simulation, see [20].

see [20].



11.3 Performance evaluation of the Standard and EDSUM function spaces for
a steady advection problem

In this 2D test problem, EDICT and non-EDICT versions of the stabilized finite ele-
ment formulation of an advection equation are used for computations based on standard-
discretization (“Standard”) and enhanced-discretization (“EDSUM”), respectively. The ob-
jective is to investigate if the EDSUM function space is inherently superior in iterative com-
putations to the Standard function space. The domain is a square and the discretization has
97× 97 nodes. For EDSUM computations the enhanced-discretization zone covers the entire
domain, and the 97×97 discretization is achieved by the combination of Mesh-1 with 25×25
nodes and Mesh-2 with 97 × 97 nodes. We use diagonal preconditioners with both function
spaces, and keep the number of inner and outer GMRES iterations the same. An essential
boundary condition in the form of a cosine hill imposed at an internal line. We perform
20 inner GMRES iterations (per outer GMRES iteration), and compare the Standard and
EDSUM solutions at the end of the 4th, 5th, and 6th outer GMRES iterations. The solutions
are shown in Figure 3. We can clearly see that the EDSUM convergence is superior to the
Standard convergence. For more on this test computation, other test computations with
EDSUM, and tests with different preconditioners, see [21].

12 CONCLUDING REMARKS

We highlighted some of techniques we developed to address the challenges involved in
computation of flows with moving boundaries and interfaces. This category of problems in-
clude fluid–particle, fluid–object and fluid–structure interactions; free-surface and two-fluid
flows; and flows with moving mechanical components. The methods we developed can be
grouped into two classes: interface-tracking and interface-capturing techniques. Both classes
of techniques are based on stabilized formulations. The core method in the interface-tracking
approach is the DSD/SST formulation, where the mesh moves to track the interface. The
core method for the interface-capturing techniques is the SUPG/PSPG formulation of both
the flow equations and the advection equation governing the time-evolution of the interface
function. We also described some of the additional methods we developed to increase the
scope and accuracy of these two classes of techniques. With numerical examples and test
computations, we showed how some of the techniques described work.
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Figure 3: Performance evaluation of the Standard and EDSUM function spaces for a steady advection
problem. Solutions obtained with the Standard (left) and EDSUM (right) function spaces, after 4 (top), 5
(middle), and 6 (bottom) outer GMRES iterations. For more on this test computation, see [21].




