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Finite element computation of incompressible flows involves two main
sources of potential numerical instabil it ies associated with the Galerkin
formulation of a problem. One source is due to the presence of advection
terms in the governing equations, and can result in spurious node-to-node
oscillations primarily in the velocity field. Such oscillations become more
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apparent for advection-dominated (i.e., high Reynolds number) flows and
flows with sharp layers in the solution. The other source of instability is due
to using inappropriate combinations of interpolation functions to represent
the velocity and pressure fields. These instabilities usually appear as
oscillations primarily in the pressure field. In fact, there is not much about
either of these numerical instabilities that could be considered to be inherent
to the finite element formulation. Such instabilities appear also in the
standard versions of other discretization techniques such as finite difference
and finite volume methods.

This chapter consists of a review of the stabilized finite element
formulations designed to prevent the potential numerical instabilities just

described. The stabilization techniques that are reviewed more extensively
than others are the Galerkin,/least-squares (GLS), streamline-upwind/
Petrov-Galerkin (SUPG), and pressure-stabllizing/Petrov-Galerkin
(PSPG) formulations. All these formulations are consistent in the sense
that, for reasons to be explained soon, an exact solution still satisfies the
stabilized formulation. The descriptions of the stabilized formulations

emphasized in this chapter, and the numerical examples presented, have all
been extracted from recent papers by Tezduyar et ql. (1990c, d, e) and Liou
and Tezduyar (1990).

The SUPG stabilization for incompressible flows is achieved by addirtg to
the Galerkin formulation a series of terms, each in the form of an integral
over a different element. These integrals involve the product of the residual
of the momentum equation and the advective operator acting on the test
function. This formulation was introduced by Hughes and Brooks (1979).

A comprehensive description of the formulation, together with various
numerical examples, can be found in Brooks and Hughes (1982). The
implementation of the SUPG formulation in Brooks and Hughes (1982) was
based on QlP0 (bilinear velocity/constant pressure) elements and one-step
time-integration of the semi-discrete equations obtained by using such
elements. The SUPG stabilization for the vorticity-stream function
formulation of incompressible flow problems, including those with
multiply-connected domains, was introduced by Tezduyar et al. (1988).

It is relevant to mention that the SUPG stabilization has been successfully
applied to not only incompressible flows, but also compressible flows. In
fact, there has been always some exchange of technology between these two
application areas. The SUPG stabilization for hyperbolic systems in general

and compressible Euler equations in particular was first introduced in a
NASA report by Tezduyar and Hughes (1982). This report includes a
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detailed stability and accuracy analysis and several one- and two-
dimensional examples. The method was also presented in an AIAA paper

by Tezduyar and Hughes (1983). The journal version of the NASA report
was published with some additional numerical examples (Hughes and
Tezduyar, 1984). The stabilization techniques introduced in Tezduyar and
Hughes (1982) constituted a pilot work for compressible flows. For
example, the Taylor-Galerkin stabilization method, which appeared in an
article by Donea (1984) is very similar (under certain conditions identical) to
one of the stabilization methods introduced in Tezduyar and Hughes
(1982). Another example is the SUPG stabilization for compressible flows
in the entropy variables formulation (Hughes et al.,1987). Among others
with interest in SUPG stabil ization, Johnson and his group (see, e.g.,
Johnson and Saranen, 1986) has been perhaps one of the most involved
ones.

Because in the SUPG stabilization the stabilizing terms added involve the

residual of the momentum equation as a factor, when an exact solution is

substituted into the stabilized formulation, these added terms vanish. and as

a result the stabilized formulation is satisfied by the exact solution in the

same way as the Galerkin formulation is satisfied. It is because of this
property of the SUPG stabilization (and the other stabilization approaches

emphasized in this chapter) that numerical oscillations are prevented

without introducing excessive numerical diffusion (i.e., without "over-

stabilizing"), and therefore without compromising the accuracy of the

solution.
Two other stabilization techniques that became quite known in the past

several years should be mentioned here. One is the selective mass lumping
method of Kawahara et al. (1982). This method has been successfully used
particularly in solving flow problems governed by the shallow water
equations. It can be shown that there is a close relationship between this
method and adding isotropic numerical diffusion to the governing

equations. In fact, although currently the selective lumping parameter used
in this method is determined empirically, some theoretical guidelines in

determining this parameter can be provided based on this relationship. The

other stabilization technique is the balanced tensor diffusivity (BTD)

method of Gresho et ul. (1984).In this method, a streamline diffusion term

is added to the differential equations to compensate for the time truncation

error corresponding to the forward Euler time-integration. It was shown by

Gresho (1990) and Gresho and Chan (1990) that the BTD method exhibits

the symptoms of excessive diffusion for certain test problems, particularly
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for the problem involving an inviscid vortex for which the initial condition
is also an exact solution that a reliable algorithm is expected to maintain as
accurately as possible. Gresho predicted that the suPG stabil ization would
exhibit similar symptoms. It was essentially this prediction that motivated
the work leading to the article by Tezduyar et al. (1990a).

Based on numerical experiments with the inviscid vortex and the unsteady
flow past a cylinder at Reynolds number 100, it was shown inTezduyar et
ql. (1990a\ that:

(a) the SUPC stabilization for the vorticity-stream function formulation
exhibits no symptoms of excessive diffusion;

(b) the SUPG stabil ization, as implemented in Brooks and Hughes (1982)
with the Q1P0 element and the one-step time-integration, does
exhibit symptoms of excessive diffusion;

(c) this situation can be improved significantly if the one-step time-
integration scheme is replaced by the multi-step T6 scheme proposed
in Tezduyar et ol. (1990a), and in which the SUpG stabilization is
applied only to the advection step; this scheme shows virtually no
symptoms of excessive diffusion.

It is the belief of this author that the symptoms of excessive diffusion is
not due to the SUPG stabil ization in general, but the combination of the
SUPG stabil ization, the QlP0 element, and the one-step time-integration.
The pressure function space is too poor for the discrete formulation to
benefit from the consistency property of the SUPG stabilization. The
situation improves significantly in the T6 formulation because the SUpG
stabilization is applied only to the advection step, and that step does not
involve any pressure terms. In fact, there is more evidence to support this
belief. For higher-order elements such as Q2Pl (biquadratic velocity/linear
pressure) and pQ2Pl (pseudo-quadratic version of Q2pl), for which the
pressure function space is richer, it was shown by Tezduyar et al. (1990b)
that, for the same set of test problems used in Tezduyar et al. (1990a), the
excess diffusion exhibited by the one-step and T6 schemes are quite
comparable and very small. Furthermore, it was shown inTezduyar et al.
(1990c) that for the stabil ized QlQl (bil inear velocity and pressure)
element, which has just a richer pressure function space than the elp0
element, the excess diffusion exhibited by the one-step and T6 schemes are,
again, quite comparable and very small.

It is quite well-known that, without any kind of stabilization, for reliable
computations, appropriate combinations of interpolation functions must be
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used to represent the velocity and pressure. Elements that do not satisfy the
Brezzi condition (Brezzi, 1973), yet look attractive for some reason, should
be handled with care. For example, the QlP0 element is one that does not
satisfy this condition, yet it has always been a very popular element.
Nevertheless it is an element that can potentially yield unstable computa-
tions. The Q2Pl and pQ2Pl elements, on the other hand, are known to be
among the quadrilateral elements satisfying the Brezzi condition, and have
been successfully implemented with the SUPG stabilization (Tezduyar et
al.,1990b) to be used for high Reynolds number flows. Recently, Pironneau
and Rappaz (1989) and Bristeau et al. (1990) showed that inappropriate
combinations of interpolation functions can lead to numerical oscil lations
also in some compressible flow problems. Furthermore, they showed that
combinations similar to those known to be stable for incompressible flows
can be successfully used for compressible flows.

It was shown that (see Brezzi and Pitkaranta, 1984, and Hughes e/ a/.,
1986), with proper stabil ization, elements that do not satisfy the Brezzi
condition can be used for Stokes flow problems. The Petrov-Galerkin
stabilization proposed in Hughes et al. (1986) is achieved, just like in the
SUPG stabil ization, by adding to the Galerkin formulation a series of
integrals over element domains. Again, these terms involve the residual of
the momentum equation as a factor, and therefore the stabilized
formulation is consistent. Several researchers have been actively involved
with stabil ization techniques for Stokes flows, and many articles on this
subject appeared in the recent literature (or about to appear soon); to give
a few examples: Hughes and Franca (1987); Franca and Hughes (1988);
Franca and Dutra do Carmo (1989); Douglas and Wang (1989); Franca and
Stenberg (1990); and Silvester and Kechkar (1990).

The PSPG stabilization term proposed in Tezduyar et a/. (1990c) is a
generalization, to finite Reynolds number flows, of the Petrov-Galerkin
stabil ization term proposed in Hughes et ol. (1986) for Stokes flows. The
coefficients in the PSPG stabilization terms vary with the Reynolds number
(based on a global scaling velocity) very much as the coefficients in the
SUPG stabil ization terms do. In the zero Reynolds number l imit, the PSPG
stabilization term reduces to the one proposed in Hughes et al. (1986). In
Tezduyar et al. (1990c), the SUPG and PSPG stabilizations are used
together with both one-step (T1) and multi-step (T6) time-integration
schemes. With the Tl scheme. the SUPG and PSPG stabil izations are
applied simultaneously. As will be explained soon, another way to arrive at
this combined SUPG/PSPG stabilization is by considering the GLS
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stabilization for the steady-state equations of incompressible flows. With

the T6 scheme, on the other hand, the SUPG stabilization is applied only to
the steps involving the pressure terms. Both schemes were implemented in
Tezduyar et al. (1990c) based on the QlQl and PlPl (l inear velocity and
pressure) elements, and were successfully applied to a set of nearly standard

test problems. Also, recently, Lundgren and Mansour (1990) applied this
type of stabilization techniques to Lagrangian finite element computation
of viscous free-surface flows.

The GLS stabilization is a more general stabilization approach that
includes the essence of the SUPG and PSPG type stabil izations. This

approach has been successfully applied to Stokes flows (Hughes and
Franca, 1987), compressible flows (Hughes et al. 1989, and Shakib, 1988),
and incompressible flows at finite Reynolds numbers (Hansbo and
Szepessy, 1990, Tezduyar et sl., 1990d,e, and Liou and Tezduyar, 1990). In

the GLS stabilization of incompressible flows, the stabilizing terms added
are obtained by minimizing the sum of the squared residual of the
momentum equation integrated over each element domain. Consequently,
just l ike in the SUPG and PSPG stabil izations, because the stabil izing terms
involve the residual of the momentum equation as a factor, the stabilized
formulation is consistent.

For time-dependent problems, a strict implementation of the GLS
stabilization technique necessitates finite element discretization in both space
and time, and therefore leads to a space-time finite element formulation of
the problem. The space-time finite element formulation has recently been
successfully used, in conjunction with the GLS stabilization, for various
problems with fixed spatial domains. This author is most familiar with
references Hughes et al. (1987), Hughes and Hulbert (1988), Shakib (1988),

and Hansbo and Szepessy (1989). The basics of the space-time formulation,
its implementation, and the associated stability and accuracy analysis can be
found in these references. It is important to realize that the finite element
interpolation functions are discontinuous in time, so that the fully discrete
equations are solved one space-time slab at a time, and this makes the com-
putations feasible. Still, the computational cost associated with the space-
time finite element formulations using piecewise linear functions in time is
quite heavy. For large-scale problems, it becomes imperative to employ
efficient iteration methods to reduce the cost involved. This was achieved in

Liou and Tezduyar (1990) by using the generalized minimal residual
(GMRES) iteration algorithm (Saad and Schultz, 1983) with rhe clustered
element-by-element (CEBE) preconditioners (Liou and Tezduyar, 1990).
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With a slightly more liberal implementation of the GLS stabilization,

computation of time-dependent incompressible flow problems can be

achieved by using the finite element discretization in space only, rather than

in both space and time. To do this, we first consider the GLS stabilization

for the steady-state equations of incompressible flows. Then, in the

definition of the stabilizing terms, we replace the residual of the steady-state

equations with the time-dependent one. These stabilizing terms are added to

the Galerkin formulation of the time-dependent equations. The stabilized

formulation obtained this way is, of course, sti l l  consistent. Furthermore,

this stabil ization is very close to the combined SUPG/PSPG stabil ization

mentioned previously.

Perhaps one of the most striking applications of the stabil ized space-time

finite element formulation is, as it was first pointed out by Tezduyar

et qt. (1990d, e), in computing moving boundaries and interfaces. The DSD/

ST (Deforming-Spatial-Domain,/Space-Time) procedure introduced by

Tezduyar et al. (1990d, e) serves this purpose, and was successfully applied to

several unsteady incompressible flow problems involving moving boundaries

and interfaces, such as free-surface flows, liquid drops, two-liquid flows, and

flows with drifting cylinders. In the DSD/ST procedure, the finite element

formulation of a problem is written over its space-time domain, and therefore

the deformation of the spatial domain with respect to time is taken into account

automatically. Furthermore, in the DSD/ST procedure the frequency of

remeshing is minimized. Here, we define remeshing as the process of

generating a new mesh, and projecting the solution from the old mesh to the

new one. Since remeshing, in general, involves projection errorS, minimizing

the frequency of remeshing results in minimizing the projection errors.

The outl ine of the rest of this chapter is as follows. In Section II, the

governing equations of the unsteady incompressible flows are reviewed.

The review of the space-time and GLS formulations is presented in Section

III. The SUPG and PSPG stabil izations are reviewed in Section IV. In

Section V, as an application to moving boundaries and interfaces, the

DSD/ST procedure is reviewed. Sections III, IV, and V include numerical

examples for the methods reviewed in those sections. Concluding remarks

are given in Section VI.

II. The Governing Equations

Let C), C Rn'd be the spatial domain at t ime I e (0,7'), where n,o is the

number of space dimensions. Let Il denote the boundary of O,. We
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consider the following velocity-pressure formulation of the Navier-stokes
equations governing unsteady incompressible flows:

V ' u : 0

on f) ,  v/  e (0, Z),  (2.1)

on O, vt  e (0, Z),  (2.2)

where p and u are the density and velocity, and o is the stress tensor given as

o(p, u) : -pl + 2pt(u), (2.3)
with

e(u) : j lvu + (vu)tl (2.4)

Here, p and p are the pressure and the dynamic viscosity, and I is the
identity tensor. The part of the boundary at which the velocity is assumed
to be specified is denoted by (Il)r:

u : g on (1,)g v/ e (0,?.). (2.s)

The "natural" boundary conditions associated with (2.1) are the conditions
on the stress components, and these are the conditions assumed to be
imposed at the remaining part of the boundary:

n . o :  h  o n  ( 1 , ) r , v t e ( 0 , ? . ) . (2.6)

The homogeneous version of (2.6), which corresponds to the "traction-

free" (i.e., zero normal and shear stress) conditions, is often imposed at the
out flow boundaries. As initial condition, a divergence-free velocity field
uo(x) is specified over the domain f), at I : 0:

u(x, 0) : uo(x) on Qo. (2.7)

Let us now consider two immiscible fluids, A and B, occupying the
domain C),. Let (Qr)o denote the subdomain occupied by fluid A, and (Il)o
denote the boundary of this subdomain. Similarly, let (er)s and (Il)u be the
subdomain and boundary associated with fluid B. Furthermore, let (Il)ou
be the intersection of (1,)a and (Il)u, i.e., the interface between fluids A
and B.

The kinematical conditions at the interface (|,)es are based on the
continuity of the velocity field. The dynamical conditions at the interface,
for two-dimensional problems, can be expressed by the following equation:

t r e ' oe  *  ns  .  68 :  n^y /R^  on  ( | , ) en  V t  e  (0 ,7 ) ,  ( 2 .8 )

/ 0 u  \
, ( " * u ' v u / - v ' o : 0
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where no and n" are the unit outward normal vectors at the interface, oA

and os are the stress tensors, y is the surface tension coefficient, and Ro is

the radius of curvature defined to be positive when no points towards the

center of curvature. The condition (2.8) is formally applicable also for free-

surface flows (i.e., when the second fluid does not exist), provided that

subdomain (Q,)o is the one assigned to be occupied by the fluid.

III. The Space-Time Formulation and the Galerkin/

Least-Squares Stabilization

A. Tsr Mprnor

Let us first assume that the spatial domain is fixed in time. Under this

assumption, the subscript r is dropped from the symbols C), and f,. In the

space-time finite element formulation, the time interval (0, I) is partitioned

into subintervals  In :  ( tn , t , * , ) ,  where tnand /n*r  belong to an ordered

series of t ime levels 0 : /o < /r < ... ( l,v : ?". The space-time slab Qn is

defined as the space-time domain e) x In. The lateral surface of Q, is

denoted by P,; this is the surface described by the boundary f, as I traverses

1n. Similar to the way it was represented by Eqs. (2.5) and (2.6), P, is

decomposed into (P,)s and (P,)n with respect to the type of boundary

condition being imposed.

Finite element discretization of a space-time slab Q, is achieved by

div id ing i t  in to e lements Q"" ,  e :  1 ,2,  . . . , (nrr )n,  where (n. )n is  the number

of elements in the space-time slab Qn. Associated with this discretization,

for each space-time slab we define the following finite element interpola-

tion function spaces for the velocity and pressure:

(sl), : lon I un e lHth(e)]',a, uh i gh on (PJ*], (3 .1 )

V5, : {,on lttn e lH'n(Q)l""ir, wh = 0 on (P,)r}, (3.2)

(s : ) "  :  v | ) " :  lqn lqn e H'h(Q)] .  (3.3)

Here Hrh(Qn) represents the finite-dimensional function space over the

space-time slab Q". This space is formed by using, over the parent

(element) domains, first-order polynomials in space and time. It is also

possible to use zeroth-order polynomials in time. In either case, globally,

the interpolation functions are continuous in space but discontinuous in

time.
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The space-time formulation of (2.1)-(2.7) can be written as follows: Start
with

(uh;; : (uo;h; (3.4)

sequen t i a l l y  f o r  Q r ,Qr , . . . , eN_r ,  g i ven  (uh ) , ,  f i nd  uh  e  (S l ) ,  and
ph e 1sj),, such that vwh e (zuh)n and vqh e 1vj),,

[  * '  t ( + * u n . v u n )  d O + \  c ( w h ) : o ( p n , u h )  d O - \  w h . h d p
, \e,  \  d I  /  . lO,  J t&r ,

i r '
* 

)n.n^ 
v . uh dQ + 

.lo(wh);. 
((uh); - 1uh;;; ao

* 
' f l "  

I  Jr(+ *  un.v,on) -  v.  
. r

" = r J e i  t  \ d /  /  
" ( q n ' n n ) )

l / a r n  \  I

I r ( ;  
+  u h ' v u h /  -  v ' o ( p h . " n t ) a e :  o .  ( 3 . s y

In the variational formulation given by (3.5), the following notation is being
used:

(3.6)

(3 .7 )

(3 .8 )

(un)ot : 
]in1 

un{r" * d),

I  r f

. ln . t " ' r  
on :  

) , . ,1nr" . r  
de dt .

l r r
I t  r d P : \  l r . - t a r a , .
. rPa  . t r ,  J r

Remarks

l� If we were in a standard finite element formulation, rather than a
space-time one, the Galerkin formulation of (2.1)-(2.7) would have
consisted of the first four integrals (their spatial versions of course)
appearing in Eq. (3.5). In the space-time formulation, because the
interpolation functions are discontinuous in time, the fifth integral in Eq.
(3.5) enforces, weakly, the continuity of the velocity in time. The remaining
series of integrals in Eq. (3.5) are the least-squares terms added to the
Galerkin variational formulation to assure the numerical stability of the
computations. The coefficient r determines the weight of such added terms.
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2. This kind of stabilization of the Galerkin formulation is referred to

as the Galerkin,/least-squares (GLS) procedure, and can be considered as a

generalization of the stabilization based on the streamline-upwind/Petrov-

Galerkin (SUPG) procedure employed for incompressible flows. lt is with

such stabilization procedures that it is possible to use elements that have

equal-order interpolation functions for velocity and pressure, and that are

otherwise unstable.
3. It is important to realize that the stabilizing terms added involve the

momentum equation as a factor. Therefore, despite these additional terms,

an exact solution is still admissible to the variational formulation given by

Eq .  (3 .5 )

The coefficient ? used in this formulation is obtained by a simple multi-

dimensional generalization of the optimal z given in Shakib (1988) for one-

dimensional space-time formulation. The expression for the r used in this

formulation is

|  /  2 \ '  /2 l lun l l \ '  /4u \ ' .1 - ' "
1 : l r - l  + r - " - " l * ( ; : )  |  ( 3 . 9 )'  

[ \ n t /  \  h  /  \ , , /  j

where v is the kinematic viscosity, and Ar and h are the temporal and spatial
"elernent lengths." For steady-state computations, a different definition

for r is used:

(3 .  l0 )

For derivation of r for higher-order elements, see Franca et al. (1990).

Remqrk

4. Because the finite element interpolation functions are discontinuous in

time, the fully discrete equations can be solved one space-time slab at a time.

Still, the memory needed for the global matrices involved in this method is

quite substantial. For example, in two dimensions, the memory needed for

space-time formulation (with interpolation functions that are piecewise

linear in time) of a problem is approximately four times greater compared

with using the finite element method only for spatial discretization.

However, iteration methods can be employed to substantially reduce the cost

involved in solving the linear equation systems arising from the space-time

finite element discretization. It was shown in Liou and Tezduyar (1990) that

': [(#)'. (#)']-'"
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the clustered element-by-element (CEBE) preconditioners (Liou and
Tezduyar, 1990), together with the generalized minimal residual (GMRES)
method (Saad and schultz, 1983) can be effectively used for this purpose.

B. NuuEnrcar ExaMprss

In this section, numerical examples are presented from the space-time
finite element computations based on the cEBE/GMRES iteration method.
The interpolation functions used for velocity and pressure are piecewise
bilinear in space and piecewise linear in time. These computations involve
no global coefficient matrices, and therefore need substantially less com-
puter memory and time compared to non-iterative solution of the fully
discrete equations (see Remark 4). By using very large time step sizes (e.g.,
100,000) the steady-state solutions are obtained in a few time steps. For the
description of the iteration method, its performance characteristics, and the
details of the numerical examples, see Liou and Tezduyar (1990).

The lid-driven cavity flow ot Reynolds number 1000

In this problem, the cavity has a square shape, and the Reynolds number
is based on the size of the cavity and the velocity of the l id. A uniform mesh
with 64 x 64 elements and 4225 nodes is employed. Every time step,
approximately 25,000 equations are solved simultaneously. Figure I shows,
for the steady-state solution, velocity components along the vertical and
horizontal centerlines, pressure, vorticity, and stream function.

"Steady-state" solution for flow past a cylinder at Reynolds number 100

In this test problem, the dimensions of the computational domain,
normalized by the cylinder diameter, are 30.5 and 16.0 in the flow and
cross-flow directions, respectively. The free-stream velocity is 0.125.
Reynolds number is based on the free-stream velocity and the diameter of
the cylinder. symmetry conditions are imposed at the upper and lower
computational boundaries, and the traction-free condition is imposed at the
outflow boundary. A mesh with 5400 elements and 5510 nodes is employed.
Every time step approximately 33,000 equations are solved simultaneously.
Figure 2 shows, for the "steady-state" solution, pressure, vorticity, stream
function and stationary stream function.
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Frc. 1. Steady-state solution for the lid-driven cavity flow at Reynolds number 1000:
velocity components along the vertical and horizontal center lines, pressure, vorticity, and
stream function (Liou and Tezduyar, 1990).
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vort ic i ty

Ftc. 2. "Steady-state" solution for flow past a cylinder at Reynolds number 100: pressure,
vorticity, stream function, and stationary stream function (Liou and Tezduyar, 1990).
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IY. The Formulations with the SUPG and PSPG Stabilizations

A. TnB Mrrnor

In this section, the variational formulations with the SUPG and PSPG

stabilization terms are described. These formulations are based on finite
element discretization in space only, rather than in both space and time.

Let us discretize the domain O by subdividing it into elements O",

e :  7 ,2,  . . . , f re t ,  where rz . ,  is  the number of  e lements.  Associated wi th th is
discretization, we define the following finite element interpolation function

spaces for the velocity and pressure:

s,l : fun luh e 1,a1h1elr1n,o, uh = gh on lsl,

Zoh : fwh lwh e 1111h1fl)1n"o, wh = 0 on lrl,

sI  :  v;  :  lqnlqh e r l rhlo; ; ,

where 11'n(f,)) represents the finite-dimensional function space over the

spatial domain O. This space is formed by using, over the element domains,
first-order polynomials in space. The stabilized Galerkin formulation of
(2.1)-(2.7) can be written as follows: Find uh e S| andpn e Sj'such that,
vwh € Zuh and vqh e V!,

(4 .1 )

(4.2)

(4.3)

(4.4)

As it can be seen from Eq. (4.4), two stabil izing terms have been added to
the standard Galerkin formulation of (2.1)-(2.7); the one with 6h is the

SUPG term, and the one with eh is the PSPG (pressure-stabil izing/Petrov-

Galerkin) term. The Petrov-Galerkin functions 5h and eh are defined as

* un . vun) ao + 
J, '  

c(wh): o(ph, uh) do

w h . h d r + J n a n v

# * ".  v") -  v. o(pn,u' l ]  ao :  o.

6h  :  Tsupc  uh ' vwh .

" l
€ , ,  :  Tpspc 

pYq, , ,

[,*'' '(q#
- J",

[ , (

. uh df, * 
"!, Jr" 

(6h + eh)

(4.5)

(4.6)
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rsupc : 
ffi.G.,;,

?pspc : 
ffi ze.fll.

Here, Reu and Re{' are the element Reynolds numbers, which are based,

respectively, on the local velocity uh and a global scaling velocity U. That is,

(4.7)

(4.8)

(4.e)

(4 .10)

l lunl l  rr
R e " :  t ; '

-  l lu l l  r r#
R e i : ; .

The "element length" /t is computed by using the expression

/ ' r n  \ - l

h  :  2 l  I  l t ' v r u , l  )
\ a = 1  /

z ( R e ) : f n e z l '  
o c R e < 3 '

(  l ,  3 < R e .

( 4 . 1 l )

where r.n is the number of nodes in the element, No is the basis function

associated with node a, and s is the unit vector in the direction of the local

velocity. The "element length" hn. on the other hand, is defined to be equal

to the diameter of the circle which is area-equivalent to the element. The

function z(Re) used in Eqs. (4.'7) and (4.8) is defined as

(4.r2)

The spatial discretization of Eq. (4.4) leads to the following set of non-

linear ordinary differential equations.

( M  + M u ) a  +  N ( v )  +  N 6 ( v )  +  ( K +  K u ) t -  ( G + G u ) p : F  + F 6 ) ,  ( 4 . 1 3 )

G r v + M . a +  N . ( v ) +  K . v *  G . p : E + E . ,  ( 4 . 1 4 )

where v is the vector of unknown nodal values of uh, a is the time derivative

of v, and p is the vector of nodal values of ph. The matrices M, N, K and

G are derived, respectively, from the time-dependent, advective, viscous,

and pressure terms. The vector F is due to the boundary conditions (2.5)

and (2.6) (i.e., the g and ft terms), whereas the vector E is due to the

boundary condition (2.5). The subscripts 6 and e identify the SUPG and

PSPC contributions, respectively.
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First, consider the time-integration of Eqs. (4.13) and (a.14) by a one-step
gene ra l i zed  t rapezo ida l  r u l e :  i . e . .  g i ven  (uh ) , ,  l i nd  (uh )n * ,  and  (pn )n_ ,  ( rh i s
will be referred to as Tl formulation). When written in an incremental
form, the Tl formulation leads to

t 7

where

(4 .15)

(4 .16)

(4.r7)

(4.1e)

(4.20)

(4.2r)

M * A a - G * A P : 1 1 ,

(Gr)* aa + G. Ap : Q,

R : F * Fo - [(M + Mu)a + N(v) + N6(v)
+ (K + Ku)v - (G + Gu)pl,

Q :  E  *  E .  -  [G 'v  +  M.a  +  N. (v )  +  K .v  +  G.p ] ,  (4 .18)

M* :  M +  Mu +  "o r (H.  
*  

+  K  +  K6) ,

G * : G * G o ,

M , + o ^ ' ( * + K , + G r ) .

The parameter cv controls the stability and accuracy of the time integration
algorithm.

Remark

5. The systems (4.15) and (4.16) can be solved by treating the velocity
explicit ly in the momentum equation. Since the SUPG and PSPG supple-
ments are applied to all terms in the momentum equation, in explicit
computations the coefficient matrix of the pressure equation is generally
not symmetric. All explicit Tl computations reported in this section are
based on the symmetrization of the coefficient matrix of the pressure
equation, and the results are obtained with two passes per time step. In such
computations, M*, G* and (Gr)* are replaced with

(Gt)* :

M *  :  M r ,

G * : G ,

( G t ) * :  . ' A / G r ,

where M. is the lumped version of the mass matrix M.

(4.22)

(4.23)

(4.24)
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To write the T6 formulation (Tezduyar et al.,1990a) of (2.1)-(2.7), we
need to slightly modify the definition of the solution space for velocity:

(S,l),*" : lun luh e [r11h1f2r1n,o, uh : Gn)n*" on I"]; (4.2s)

the definitions of the other function spaces remain as they were given by
Eqs. (a.2) and (4.3). We now summarize the T6 formulation.

l. Find (uh)f*, e (S,l),*a such rhat, vwh € Zuh,

i  , "n  . r ( tuh) , *_e  .  (uh) ,  
+  (uh) -  .  v run t - )  ao

. l a  
' \  a \ r  " /

-  i  [  , r .  , ( (un) ' - t :  
tun l '  

+  (un)  
\  

(4 .26 \
e  | ' r o "  1  d A l  ' ' v ( u ' \ ^ ) d a : 0 '

2. Find (uh)n*u e (S,l),*o and (ph)n*u e Sj such that, vwh e Zuh and
vqh e V],

[  * r  .  p [ ( u h ) , - q  -  ( u h t ; - u ] r i o  
+  |  e ( w h ) :  ( 6 h ) n _ 0 d e

. l o  0  L , t  . l n

i { '-  I  w h . ( f t h ) n * o a r +  |  q h v . 1 u h \ n * u d e
.l r" .l o

ilet r' ( pl,rUh)n* a - (on);* ul )
+  |  I  . n .  -  v . ( o h ) n * o {  a e i  :  o .  ( 4 . 2 7 1

" = r . j  o "  (  d A l  )

3. Find (uh);+1 o e (S,l)n*r-o such that, vwh e Zuh,

[  * r . p [ (uh ) r_ * r  d__ -  ! uh ) , *d ] rn  *  [  e (wh ) :1oh ;n * rdo
. J n '  0 - 2 0 ) L t  . l o

I
-  I  ton. ( f tn)n*,  df  :  o.  (4.28)

J f r

4. Find (uh)n*,-o e (S,l) ,*r-e such that, vwh e Zoh,

i  ,  f { ' u h ) n * r ,  -  ( u n ) n - * ' - d  h .  \

Jn 
*n . ,\-"i=r;f"- + (uh),*,_e ' v(uh),* ,_u)aa

, e r  [ '  / t u , h )n+ r_o  -  ( on ) i ' * r _ ,  ,  h .  _ ,  h .  \  . ^*  
" 1 ,  . l r "  

0 '  ' p ( t . r  
-  z B l  l ,  +  ( u h ) ' * ' - ' '  v ( u h ) n *  , - u )  a o

: 0. (4.29)
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5. Find (uh);*, e (S,l),*r such that, vwh € Zoh,

t 9

, \ ,  
* ' ' ' (@#i't  * (uh)n+, o'v lun; r* , -u)ao

* (uh)o+r-0.  v1uny,* , -u)  ae i
(un) i * r  -  (uh)o+r -o

0 L t

6. Find (uh),*, e (S,l),*, and (ph)n*, e Sj such that,
vqh e V!,

n e t i /

I  I  o ' ' p (
e - l  . l 0 e  \

0. (4.30)

vwh e Zuh and

[ * '
. r o

p [ (uh ) , -  r  -  ( uh ) ; * r ] do

0 L r
+ 

{n 
etron) : 1oh;n*, do

i
I
.l fr

n e l

r

wh . (fth)n*, ra * 
J, 

qh v . 1uh;n*, do

[ . ' I
. 1  o e  (

v . ton), . , ]  ao :
p[(un),*r - (un);*rl

0.  (4.31)
0 L t

Remarks

6. The parameter 0 is the one used in the d-scheme (Bristeau et ol.,
1987); for the numerical examples to be reported in this section, it is set to ].

7 . The matrix forms corresponding to Eqs. (4.26), (4.28), (4.29), and
(4.30) can be solved implicitly or explicitly as described inTezduyar et al.
(1990a). The matrix form of the two "Stokes substeps," i.e., Eqs. (4.27)
and (4. 3 1 ), are quite similar to the matrix form of the T I formulation; they
can be solved implicitly or by treating the velocity explicitly. The results
reported in this section are based on the explicit treatment of all substeps.
The numbers of passes used in the substeps are 4-2-2-2-4-2.

B. Nuunnrcar ExeuprEs

To have a better basis of comparison among the solutions obtained by
using different elements, meshes generated with different elements are
required to have the same distribution of the velocity and pressure nodes.
The nodal values of the stream function and vorticity are obtained by the
least-squares interpolation. For the meshes generated with the PlPl



20 T. E. Tezduyqr

elements, these quantities are computed from the velocity field by using the
meshes generated with the QlQl element. For details of the computations
and the performance characteristics, see Tezduyar et al. (1990c).

Unsteady flow post a cylinder at Reynolds number 100

The problem set-up in this case is the same as it was for the "steady-state"

case of Section lII. However, this time we are interested in the unsteady
behavior. The mesh used for Q I Q 1 consists of 5240 elements, while the num-
ber of elements for P I P 1 is 10,480. Both meshes contain 5350 velocity nodes.
The periodic solution is computed by introducing a short-term perturbation
to the symmetric solution. We have observed, at least for small perturba-
tions, that the periodic solution is independent of the mode of perturbation.

Strouhal number and the time history of the lift and drag coefficients
are shown in Figs. 3 and 4. Compared to the Tl formulation, the T6

o ' l  o 1 / T 1 o 1 0 1 / T 6
4

aoo.o

P 1 P 1 / T 1 P 1 P 1 / T 6

Ftc. 3. Periodic solution (obtained with various formulations) for flow past a cylinder at
Reynolds number 100: Strouhal number and the time history of the lift coefficient (Tezduyar
et a|. .1990c\.
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P 1 P , 1  / T 1

Il ",iffi \A

t I
500.0  too .o  1000,0  1200.0  0 .0 400,0  !000.0  1200.0

Frc. 4. Periodic solution (obtained with various formulations) for flow past a cylinder at
Reynolds number 100: time history of the drag coefficient (Tezduyar et al., 1990c).

formulation gives a slightly higher Strouhal number. Also, the Q1Q1
element gives a Strouhal number abouL 2Vo higher than what the PlPl
element gives. Although the lift and drag coefficients show no significant
difference among different formulations, the QlQl element gives a slightly
higher drag coefficient than the PlPl element, and the T6 formulation gives

a slightly higher drag coefficient than the Tl formulation.
The periodic solution flow patterns corresponding to the crest value of

the lift coefficient are shown in Figs. 5-8. The patterns corresponding to the
trough value of the lift coefficient are simply the mirror images, with
respect to the horizontal centerline, of the patterns shown in Figs. 5-8. The
solutions obtained with different formulations are very similar. However, it
can be seen, upon close comparison, that the T6 formulation is less
dissipative than the Tl formulation and that the QlQl element is less
dissipative than the PlPl element. On comparing these solutions with the

21

o 1 0 1 / T 6
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vort ic i ty

@4OOoo

vort ic i ty

stream funct ion

stat lonary stream f  unct ion stat ionarv stream funct ion

Frc. 5. Periodic solution (obtained with QlQl/Tl) for flow past a cylinder at Reynolds

number 100: flow patterns corresponding to the crest value of the lift coefficient (Tezduyar

et  o1. .1990c\ .

st ream funct ion

pressure pressure
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vortrcr ty

@l,Qo0o0

vort ic i ty

stream funct ion s t ream func t i on

s ta t i ona ry  s t r eam f  unc t i on stat ionary stream f  unct ion

Frc. 6. Periodic solution (obtained with QlQl/T6) for flow past a cylinder at Reynolds
number 100: flow patterns corresponding to the crest value of the lift coefficient (Tezduyar

et  a l . .1990c\ .
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vort ic i ty
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vo r t i c i t y
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stat ionary stream f  unct ion

pressu re

Frc. 7. Periodic solution (obtained with P1P1/Tl) for flow past a cylinder at Reynolds

number 100: flow patterns corresponding to the crest value of the lift coefficient (Tezduyar

et  a l . .1990c\ .
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vort ic i ty

@@0O0oo

vort ic i ty

s t r eam func t i on stream funct ion

Frc.8. Periodic solution (obtained with PlPl/T6) for flow past a cylinder at Reynolds
number 100: flow patterns corresponding to the crest value of the lift coefficient (Tezduyar
et  a| . .1990c).
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ones reported in Tezduyar et al. (1990b), it can be observed that the
solutions obtained with the QlQl and PlPl elements are very close to the
ones obtained with the pQ2P1 and QlP0/T6 elements.

V. Application to Moving Boundaries and Interfaces:
The DSD/ST Procedure

A. Tns MrrHoo

It was first shown in Tezduyar et al. (1990d,e) that the stabilized
space-time finite element formulation described in Section III can be
effectively applied to fluid dynamics computations involving moving
boundaries and interfaces. The variational formulation associated with the
DSD/ST (Deforming-Spatial-Domain/Space-Time) procedure is only
slightly different than the one given by Eq. (3.5) in Section III. Because the
spatial domains are now time-dependent, the subscript I that was dropped
from the symbols such as f), and Il needs to be reinstated. Furthermore, we
let On : O,, and l, : 1,,, and define the space-time slab Qn as the domain
enclosed by the surfaces On, On*1 , and Pn (see Fig. 9). The variational for-
mulation replacing the one given by Eq. (3.5) can then be written as follows:

Jn,*n 
r(# * on. von) oO * 

In.e(wh) 
: o1ph,nh1 dg

- 
J*" 

wh . h dP - 
J,*,^" 

wh . noy/RodP

. i- J,,'[,(#."
[ , ( # * u n ' v u n )  

- v

+ | qh v . uh dO + \ (ton);. ((uh); - (uh);) aet
J Q "  J  O "

or " t )  -  v .o tqn ,wn) ]

.  o(ph,onl]  aO :  o,  (5.r)

where (P)as is the space-time surface described by the boundary (1,)as as
/ traverses the time interval (t,, tr+r).
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t = t n + 1

m

L(Vr ,  V2,  @,  U)

27

t

l
t/:.

[  =  t n

f.
Frc. 9. The space-time slab for the DSD/ST formulation (Tezduyar et al.,1990d).

Remarks

8. The kinematical conditions at the interface (Il)ou are automatically

satisfied because the discretized subdomains (O,)o and (O,)u share the same

nodes at  th is  in ter face.
9. The additional term (i.e., the fourth integral) in Eq. (5.1) enforces

the dynamical conditions associated with the interfaces and free-surfaces in

the presence of surface tension effects. If the interface is to be interpreted

as the free-surface of a single fluid, then the fluid is assumed to occupy sub-
domain (Q,)o. This variational formulation can of course be easily

extended to more than two fluids.
10. For two-liquid flows, the solution and variational function spaces

for pressure should include the functions that are discontinuous across the
interface.

As a special case of drifting solid objects, let us now consider a drifting
cylinder. The cylinder moves with unknown linear velocity components Z1

and V, and angular velocity @. The temporal evolutions of these additional
unknowns depend on the flow field and can be described by writing the

Newton's law for the cylinder:

D(4,  Vz ,  @,  U)d4
dt

dV,
dt

(s.2)

(5 .3 )
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dO _  T(n ,  vz ,6 ,u )
d t J

(s.4)

where D, L , and 7" are the drag, lift and torque on the cylinder, respectively,
while m and J are its mass and polar moment of inertia. The vector of nodal
values of velocity and pressure is denoted by u. Temporal discretization of
Eqs. (5.2)-(5.4) leads to a set of equations which, in an abstract form. can
be written as

V  -  V -  =  A r  D ( V - ,  V ,  U ) . (5 .5 )

Here, V (unknown) and V (known) are vectors representing the motion of
the cylinder, respectively, inside the current space-time slab and at the end
of the previous one. The current slab thickness /r+t - t, is L,t. For l inear-in-
time interpolation, Eq. (5.5) takes the form

: A t (5.6)

Based on the general expression (5.5), we can write the incremental form of
(5.6) as

- ^, (*) ou * f r - a, (*)l AV : R" (u, v). (s.7)
\ a u l  L  

- \ d v , z r

Equation (5.7) is of course coupled with the incremental form of the
discrete equation system resulting from (5.1):

(Mfiu) AU + (Milv) AV : Ru (U, V). (s.8)

In computations reported in this section, the system (5.7)-(5.8) is solved by

(V ) " * t

(V ) , * t

(@),*r

(V,)T

(v);

(ox

(4);

(v),

(@);

(n;

(v)"

(@);

+  Dr * )

+  L " * t )

+  T  " * t )

-  D " * t )

-  L i* t )

-  T  r * t )

I r

lnt";
t l

|  * t t ;
I '
I u-Q;
I
t l

l*r";
t 1

l*r ' ;
t l
|  6 r Q ;
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a block iteration scheme in which the term (AD/AV) is neglected. During

each iteration, Eq. (5.8) is solved for AU only, using the value of V from the
previous iteration; and then V is updated by (5.7) while U is held constant.

However, the full system can, in principle, be solved simultaneously to take

advantage of larger time steps afforded by a fully implicit method. Iterating

on the solution wil l sti l l  be needed not only because of the nonlinear nature

of (2.1) but also because of the dependence of the element domains Qi on

the vector V.

Remark

11. In the DSD/ST procedure, to facil i tate the motion of free-surfaces,

interfaces, and solid boundaries, we need to move the boundary nodes with

the normal component of the velocity at those nodes. Except for this restric-

tion, we have the freedom to move all the nodes any way we would l ike to.

With this freedom, we can move the mesh in such a way that we only need

to remesh when it becomes necessary to do so to prevent unacceptable

degrees of mesh distortion and potential entanglements. By minimizing the

frequency of remeshing, we minimize the projection errors expected to be

introduced by remeshing. In fact, for some computations, as a by-product

of moving the mesh, we may be able to get a l imited degree of automatic

mesh refinement, again with minimal projection errors. For example, a

mesh moving scheme suitable for a single cylinder drift ing in a bounded

flow domain is described in Tezduyar et sl. (1990e).

B. Nuurnrcnr ExeuprBs

All solutions presented in this section were obtained with linear-in-time

interpolation functions. For the details of the computations, see Tezduyar

et al. (1990e1.

Free-surface wave propogot ion

This is a problem that was considered in Hughes et ol. (1981). Initially,

the fluid is stationary, and occupies a long rectangular region with dimen-

sions L x D, where L : 949.095 and D: 10. The flow is assumed to be

inviscid, and both the density and the gravity are set to 1.0. The mesh con-

sists of 320 elements, with two elements through depth. The wave is

generated by prescribing the velocity along the left-hand boundary of the
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domain according to the expression a, : (Hc/D) sech2(crct/D - 4), where
c : IS(D + H)lt" and rc : (3H/4D)t/2, with 8 : I and 11 : 0.86. The
time step size is 1.789. Figure l0 shows the solutions obtained at various
time steps. After 160 time steps, the wave retains 94.4V0 of its init ial
amplitude. This solution compares well with those presented in Hughes el
a/ .  (1981).

_/\-

\

0
< . 1
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o . 1
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80.o 100.o
x/D

Frc.  10.  Free-surfacewavepropagat ion: t imehistoryof  thesurfacewave(Tezdrryaretal . ,
I 990e).
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3 0 .  ! 1 3 1 . 0 2 4 , A . a  1 2 0 . 0  4 : l i l  . u  ' 1 8 0 . : l

Frc. 11. Pulsating drop: time history of the axial dimensions of the drop (Tezduyar et al.,

I 990e).

Pulsoting drop

In this problem, the drop is initially of elliptical shape with axial dimen-

sions 1.25 (horizontal) and 0.80 (vertical). The density, viscosity, and the

surface tension coefficient are l�0, 0.001 and 0.001, respectively. The effect

of gravity is neglected. The number of elements is 380, and the time step size

is 1.0. Figure 1l shows the time history of the axial dimensions of the drop.

Figures l2a, l2b, 12c, and l2d show the flow field and finite element mesh

corresponding, approximately, two points a, b, c, and d in Fig. 11.

Large-a mp I i t ude s losh i ng

This problem is similar to the one that was considered in Huerta and Liu

(1988). Init ially, the fluid is stationary and occupies a 2.66'7 x 1.0

rectangular region. The density and viscosity are 1.0 and 0.002,

respectively. The gravity is 1.0, and the surface tension is neglected. The

wave is created by applying a horizontal body force of ,4 sin(rr.rl), where

A : 0.01 and a : 0.978. The Reynolds number (based on the height of the

fluid and the gravity) is 514. Inviscid boundary conditions are assumed at

the walls of the "tank." Compared to the problem considered here, the

3 1
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stream funct ion pressure

O

Frc. 12. (a) Pulsating drop: flow field and
(approximately) to point a in Fig. 1l (Tezdtryar et al.,

s t ream funct ion

veloci ty

Frc. 12. (b) Pulsaring drop:
(approximately) to point b in Fig. l1

mesh

flow field and finite element mesh
(Tezduyar et al., 1990e).
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I 990e).
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Frc. 12. (c) Pulsating drop: flow field and finite element mesh corresponding
(approximately)  to point  c in Fig.  l1 (Tezduyar et  a l . ,1990e).
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Frc. 12. (d) Pulsating drop: flow field and finite element mesh corresponding
(approximately) to point d in Fig. 1l (Tezduyar et al., 1990e).
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history of the vertical location (relative to the
the left- and right-hand sides of the "tank"

Reynolds number used in Huerta and Liu (1988) is 514,000. Furthermore,
in Huerta and Liu (1988) the horizontal body force is removed after ten
cycles; in this case, on the other hand, this force is maintained during the
entire computation. The number of elements is 441, and the time step size
is 0.107. With these values of the frequency and the time step size, a single
period of the forcing function takes 60 time steps. Figure l3 shows the time
history of the vertical location (relative to the stationary level of 1.0) of the
free-surface along the left- and right-hand sides of the "tank." Figures 14a,
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Frc. 14. (a) Large-amplitude sloshing: flow field and finite element mesh corresponding

(approximately)  to point  a in Fig.  l3 (Tezduyar et  o l . , l '990e).
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Frc. 14. (b) Large-amplitude sloshing: flow field and finite element mesh corresponding

(approximately) to point b in Fig. 13 (Tezduyar et al.,1990e).
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p ressu re

Ftc' 14. (c) Large-amplitude sloshing: flow field and finite element mesh corresponding
(approximately) to poinr c in Fig. 13 (Tezduyar et al., 1990e).

stream funct ion

Ftc. 14. (d) Large-amplitude sloshing: flow field and finite element mesh corresponding
(approximately) to point d in Fig. l3 ('Iezduyar et al., 1990e).
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l4b, l4c, and 14d show the flow field and finite element mesh correspond-
ing, approximately, to points e, b, c, and d in Fig. 13.

A cylinder drifting in a shear flow

This test problem involves a cylinder (with unit radius) drifting in a shear
flow in a 6l x 32 bounded domain. The density and viscosity are 1.0

and 0.005, respectively. The upper and lower walls move with velocities

0.156 and 0.094. The upstream velocity profi le is assumed to be a l inear
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Frc. 15. A cylinder drifting in a shear flow: time history ofthe drag, lift, torque, linear and

angular velocity components, displacement components, and rotation (Tezduyar et a1.,1990e).
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interpolation of the velocities at the upper and lower boundaries. At the
downstream boundary, normal and shear stresses are specified consistent
with the undisturbed shear flow. The Reynolds number based on the average
upstream velocity and the cylinder diameter is 50. The mass and polar

moment of inertia of the cylinder are 2n and n, respectively. The initial
condition is the steady-state solution for the fixed cylinder located at (16,16)
relative to the lower left corner. The number of elements is 1152. Except for
the first few time steps, the time step size is 0.125. Figure 15 shows, for the
cylinder, t ime history of the drag, l i ft, torque, l inear and angular velocity
components, Cisplacement components, and rotation. Figures l6a, l6b,
and l6c show the flow field and finite element mesh at t:0.0, 62.5, and
125.0, respectively.

VI. Concluding Remarks

In this chapter, a review of stabilization techniques used in finite element
computation of incompressible flows was presented. Stabilization is needed
to prevent the numerical oscillations that might be produced by the presence
of dominant advection terms in the governing equations or by not using an
acceptable combination of interpolation functions to represent the velocity
and pressure fields. Many researchers are actively involved in development
and analysis of various stabil ization methods. It is important to make sure
that the stabilization technique does not result in over-stabilization of the
problem by introducing excessive numerical diffusion. The Galerkin/least-
squares, streamline-upwind/Petrov-Galerkin, and pressure-stabilizing/
Petrov-Galerkin stabilization techniques were reviewed in this article more
extensively than others. All three stabilization techniques lead to formula-
tions that are consistent. That is. the stabilization terms added to the
Galerkin formulation of the problem vanish when an exact solution is
substituted into the stabilized formulation. These stabilization methods
introduce minimal excess diffusion, and therefore result in solutions with
minimal loss of accuracy.

The Galerkin,/least-squares stabilization for time-dependent flow
problems necessitates finite element discretization in both space and time,
and this could be computationally quite costly. However, there are iteration
methods designed to reduce the computational cost associated with the
space-time finite element formulation. Also, for fixed spatial domains,
there are ways to implement the Galerkin./least-squares formulation in a
slightly different way then it is formally supposed to be, so that the
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Frc. 16. (a) A cylinder drifting in a shear flow: flow field and finite element mesh at I : 0.0

(Tezduyar et al., 1990e).
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FIc- 16. (b) A cylinder drifting in a shear flow: flow field and finite element mesh at
t : 62.5 (Tezduyar et al., 1990e).
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computations are performed with finite element discretization in space
only. on the other hand, the combination of Galerkin/least-squares and
space-time finite element formulations gives us a new and very effective
strategy for computation of unsteady incompressible flows involving
moving boundaries and interfaces.
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